
Velocity in Research

CS 197 | Stanford University | Michael Bernstein

What problem are we solving?

2

“I feel like we’re just not getting anywhere.”

“This keeps dragging on and it’s not working. I’m

losing motivation.” “I missed another submission deadline. I think my advisor is starting to lose faith.”

“Research is so much slower than industry.”

Today’s big idea: velocity
What is research velocity?
How do we achieve high velocity?
What other signals do people mistake for velocity?

3

Bernstein theory of faculty success
To be a Stanford-tier faculty member, you need to master two skills
that operate in a tight loop with one another.
Vectoring: identifying the biggest dimension of risk in your project
right now

Velocity: rapid reduction of risk in the chosen dimension

4

What Is Velocity?

Problematic point of view
“Research is so much
slower than industry.”

6

“I missed another
submission deadline.”

We’re not making
enough progress.

“I feel like we’re just not
getting anywhere.”

What research is not
1. Figure out what to do.
2. Do it.
3. Publish.

7

What research is
Research is an iterative process of

exploration, not a linear path from idea
to result [Gowers 2000]

My diagnosis: The Swamp
I have led and advised many projects at this point, and I can now say
with certainty: nearly every project has a swamp.
The Swamp: challenges that get the project stuck for an extended
length of time

Model not performing well
Design not having intended effect
Engineering challenges keep
cropping up
&etc 8Photo by Big Cypress National Preserve

Swamps make progress a
poor measure
Swamps can make a project appear to have no or little progress for an
extended period of time.

However, swamps are when you need to be at your most
creative. You need to try many different ideas, and rapidly, to orienteer
your way out of a swamp.
The difference between an amazing and a merely good researcher:
how effectively and rapidly you explore ways to escape the
swamp. 9

Enter velocity
Drawn from theory and practice of rapid prototyping

Buxton, Sketching User Experiences
Schön, The Reflective Practitioner
Houde and Hill, What Do Prototypes Prototype?
CS 247 (cs247.stanford.edu) — I realized that none of my PhD students
have taken or TA’ed this class

“Enlightened trial and error succeeds over the planning of
the lone genius.” - Tom Kelley

10

http://cs247.stanford.edu

Velocity vs. progress
Progress is an absolute delta of your position from the last time we
met. How far have you gotten?
Velocity is a measure of the distance traveled in that time.
If you tried a ton of creative different ideas and they all
failed…

that’s low progress
but high velocity

11

I will be thrilled

Why is velocity a better measure?
Because we have likely learned a ton from the failures along the
way.
Because we likely needed to experience those failures to eventually
get to a success: you’re learning the landscape.
Because the worst outcome is not failure, but tunneling
unproductively.

That’s low progress
and low velocity

12

this is when I

How do I achieve
high velocity?

Restating our goal, precisely
Each week’s effort — a draft paper introduction, a user interface, an
engineered feature, an evaluation design — is on the path toward
understanding the research question.
We have a question to answer this week: Will our hunch work in a
simple case? Is assumption X valid? Will this revised model
overcome the problematic issue? Can we write a proof for the
simple case? We’ve chosen this week’s question that we’re trying to
answer carefully.
Velocity is the process of answering
that question as rapidly as possible. 14

Choosing this question
is the process of
vectoring.

Approach: core vs. periphery
Achieving high velocity means sprinting to answer this week’s
question, while minimizing all other desiderata for now.
This means being clear with yourself on what you can ignore:

Core: the goal that needs to be achieved in order to answer the
question

Periphery: the goals that can be faked, or assumed, or subsetted, or
mocked in, so we can focus on the core.

15

Core-periphery mindset
The week’s goal is not a demo.

Though this is what is tempting: think, select, and then create.
But this means working on everything both in the core and in the
periphery.

The week’s goal is instead an answer to a question.
To answer a question, you don’t need to address all the issues in the
periphery. Just focus on what’s in the core.
Make strong assumptions about everything that’s in the periphery: use an
easy or smaller subset of the data, make simplifying assumptions while
working on your proof, ignore other nagging questions for the moment 16

Core-periphery mindset
I’m dedicating a second slide to this concept because it’s the key.
Your approach should be, necessarily, incomplete. Do not create a
mockup or a scale model. Instead, derive everything from your
current question:

Will this approach retain all users?
Will this measure correlate with my gut observations?
Will this engineering approach be satisfactory?

Be rapid. Be ruthless. Strip out or fake everything not required to
answer the question.

17

Core-periphery mindset
Seriously: I’m dedicating a third slide to this.
Answer questions, don’t engineer. This tends to rankle essentially
every facet of your undergraduate training.

Too often, people pursue perfection in the first pass: perfect drafts,
perfectly engineered software, perfect interaction design.
Remember: the goal is to answer the question, not to build that part of
your system permanently (yet).

18

What question  
were they asking?

What did they  
trade off?

All together now
Each week, we engage in vectoring to identify the biggest
unanswered question. This should be the focus of your velocity
sprint for the week.
To hit high velocity, be strategic about stripping out all other
dependencies, faking what you need to, etc., in order to answer the
question.
Be prepared to iterate multiple times within the week!

20

Let’s Try It

We’ll try out…
A social debugging question
A design question
An engineering question
Get in groups of 3–4, you’ll have two minutes to discuss each
question.

22

Social debugging: flash
organizations
We had a problem of online workers not
being as good as their Upwork profile
suggested. We wanted workers who were
experts at Angular, Django, UI, UX,
marketing, etc, but often in practice they
were not as good as they advertised.
We had a hunch that giving workers ~1hr
starter tasks would allow us to vet them.
How do we test this hunch? 23

We picked a small number of domains and
manually generated quick test tasks for them.
We posted these as jobs, giving a time limit. We
manually evaluated the results.
We didn’t care about generalizability or
software integration.
Afterwards, we asked ourselves: could this scale
to hundreds of people and tens of domains?

24

Social debugging: flash
organizations

Engineering: Dream Team
This project used multi-armed bandits to
identify over several rounds of interaction
whether teams should be flat or hierarchical,
supportive or critical, etc. But we didn’t know:
could these multi-armed bandits actually
converge fast enough to be useful?
We had a rough implementation of the multi-
armed bandits, but it wasn’t production ready
for interacting with teams.

25

We used a rough simulation! Assuming some
roughly accurate numbers in how much each
team benefited from each bandit setting, we
generated teams and simulated the bandits
over a few rounds.
The answer: they converged quickly enough
that this might work!
(The next step: wizard of oz the interface, so
we could test it “for real” without building
integrating software.)

26

Engineering: Dream Team

Design: Structured feed
We had a hunch that social media feeds could be much better if we had
a little bit of metadata on what you’re talking about. If it knew that you’re
posting about an episode of Westworld, or playing a game of basketball,
or studying for a specific class…could it make you seem really engaging?
Like an Instagram filter for other kinds of activity: make you seem better
at composition than you really are.

27

28

We sketched out a few ideas and then hired
Upwork designers to create some mocks of what
they might look like. (We decided it wasn’t cool
enough and dropped the project for the time being.)

Your turn
Pair up with someone not on your project.
5min each person: describe your project’s current state, the current
question you’re trying answer. Brainstorm together how to increase
velocity.
Afterwards, we’ll share out.

29

A reminder: the algorithm
1. Articulate the question you’re answering.
2. Decide what’s absolutely core to answering that question.
3. Decide what’s peripheral.
4. Decide the level of fidelity that is absolutely necessary.
5. Go — but be open to reevaluating your assumptions as you go.
6. Loop with a new question.

30

Tips and tricks

“I’m being low velocity.”
Velocity = distance / time
So, if your velocity is low, you have two options:
1. Cover more distance: habits that can get you further in the

same time (e.g., “try harder”, “be a better engineer”)

2. Decrease the time: prototype more effectively

32

You’re typically already maxed out on

WIN. Prototype more narrowly, lower
your fidelity expectations (e.g., spit out

Checking email or InstaSnapFace?
This signals a lack of focus, and is a pretty
certain predictor that you’re in a swamp.
It means you’re prototyping too broadly: you’re unfocused! focus
your goal. Or you’re requiring too high a level of fidelity: you
have unreasonable standards! lower your expectations.
Develop an internal velocity sensor, and as soon as you recognize
this, apply one of the two rules.

33

Lowering standards: parallelism
Too often, we suffer from what’s known in the literature as fixation:
being certain in an idea and pursuing it to the exclusion of all else.
We cannot separate ego from artifact.

Instead, to answer the question, it’s often best to explore multiple
approaches in parallel.

“While the quantity group was busily churning out piles of work—and
learning from their mistakes—the quality group had sat theorizing about
perfection, and in the end had little more to show for their efforts than
grandiose theories and a pile of dead clay.”
— Bayles and Orland, 2001

34

Corollary 1: pivoting
Velocity is why cutting yourself off short and pivoting to a new
project can be so dangerous in research.

Typically people pivot after a week in the swamp (the “fatal flaw fallacy”),
rather than iterating with high velocity out of the swamp.

I promise that the project you pivot to will have a swamp too. Learn
to increase velocity and prototype your way out of the swamp
faster, instead of seeking out a swampless project.

35

Corollary 2: technical debt
Obviously, at some point you need to make sure you’re not too
deep in technical debt, design debt, or writing debt.
But luckily, most people can only run their processors hot for a
few hours a day. Everything I’ve described takes a lot out of you.
When you’re out of creative cycles, spend time maturing other
parts of your project that are no longer open questions. Or,
sometimes we reach a phase where we pause prototyping and
focus on refinement and execution for a bit.

36

Why is velocity so
important?

Great research requires
high velocity
Don’t let 6-12 month paper deadlines obscure the velocity at which
research needs to move in order to succeed.

If you want to achieve a high impact idea, you need to try a lot of
approaches and refine and fail a lot. You want to do that as quickly
as possible.
If you can prototype and learn and fail 5x as quickly as the next person,
you will be able to achieve far more risky and impactful research.

38

Takeaways, in brief

1) The swamp is real, and it slows
visible progress.

2) Velocity is a far better measure
of yourself than progress, and it’s
something you actually have
control over.

3) Achieve high velocity by being
clear what question you’re
answering, and focusing ruthlessly
on the core of that question
while stripping out the periphery.

4) If you’re low velocity,
velocity = distance / time. Either
increase distance (rarely possible)
or decrease time (often possible:
you’re too broad or too
perfectionist).

And finally…
Get into your project groups and discuss your strategy for velocity.
What’s working? What can be improved?

44

Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.

45

Velocity in Research

