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We consider government service allocation – how the government allocates resources (e.g., maintenance of

public infrastructure) over time. It is important to make these decisions efficiently and equitably – though

these desiderata may conflict. In particular, we consider the design of Service Level Agreements (SLA) in

city government operations: promises that incidents such as potholes and fallen trees will be responded to

within a certain time. We model the problem of designing a set of SLAs as an optimization problem with

different equity and efficiency objectives under a queuing network framework; the city has two decision levers:

how to allocate response budgets to different neighborhoods, and how to schedule responses to individual

incidents. We: (1) Theoretically analyze a stylized model and find that the “price of equity” is small in realistic

settings; (2) Develop a simulation-optimization framework to optimize policies in practice; (3) Apply our

framework empirically using data from NYC, finding that: (a) status quo inspections are highly inefficient

and inequitable compared to optimal ones, and (b) in practice, the equity-efficiency tradeoff is not substantial:

generally, inefficient policies are inequitable, and vice versa.
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1 INTRODUCTION
Government, especially municipal government, makes allocation decisions over time: when and

where to build infrastructure (such as roadways, parks, public transportation stations) or provide

services (maintenance of resources, garbage collection, restaurant inspections). It must do so

efficiently (invest resources toward the most urgent tasks) and equitably (do not unduly prioritize

one neighborhood over another). However, these desiderata may conflict: “efficient” prioritization

may mean that one area receives fewer services. We consider two aspects of this challenge: (a)

Analysis: What does this efficiency-equity trade-off look like, i.e., when do we expect the price of

equity to be large? (b) Engineering: How do we design efficiency and equitable policies in practice,

in a data-driven manner?

We study these questions in the context of policies to respond to time-sensitive incidents – for

example, scheduling inspections and maintenance crews in response to downed trees, flooding, or

power outages. We consider the optimization of two government policy levers: response budgets
in each neighborhood (i.e., number of workers who can respond to incidents) and allocation
guidelines for how workers prioritize incidents of different types. Why these levers, instead of

directly optimizing online, incident-level decisions? Spatial budget levels describe the status quo,

for both administrative and logistical reasons: worker home offices are distributed throughout

the city as determined by the budgets, and it is more efficient for a worker to respond to spatially

nearby incidents. Thus, these levers complement daily incident-level decision optimization (which

specific open incidents should a worker address that day), determining the feasibility of a specific

daily decision (for example, the agency cannot easily inspect more incidents in a neighborhood in

a day than their worker capacity and spatial distribution allows).

Furthermore, as we show, these levers alongside information on incident arrivals induce Service
Level Agreements (SLA): promises by the government that incidents of type 𝑘 will typically

be addressed within 𝑧𝑘 days – in our model, optimizing budgets and prioritization policies are

equivalent to directly optimizing SLAs. Service Level Agreements have the following desirable

properties: (a) They are commonly used to characterize and communicate system performance in

cloud computing [Patel et al., 2009], various web services [Jin et al., 2002], and in city government

in particular. For example, New York City has published SLAs for responses to service requests

by residents;
1
e.g., the Department of Parks and Recreation (NYC DPR) will respond to a report of

Illegal Tree Damage within 8 days. In other words, they are transparent and externally auditable.

(b) if met, they can translate to equity and efficiency desiderata; for example, more urgent types

of incidents should have shorter response timelines, and overall (importance-weighted) delays in

each neighborhood should not be disparate.

However, allocating relative budgets and designing SLAs is challenging: their (joint) feasibility

depends on the available budget and incident arrival rates, which may change over time. Commu-

nication with NYC DPR indicates that current SLAs, though in theory promised to the public, are

too inaccurate to meet or guide operations. As an illustration, Figure 1 shows publicly listed SLAs

for two types of incidents in New York City, alongside how quickly these incidents were responded

to in two Boroughs.
2
(Note: in this paper, we consider the allocation of inspections in response to

requests, and so interchangeably use “response” and “inspect.”)

We tackle this design question: (a) formulate and analyze a stylized queuing model, which induces

a tractable optimization problem to determine budgets and incident type prioritization, giving

1
https://data.cityofnewyork.us/City-Government/311-Service-Level-Agreements/cs9t-e3x8

2
In NYC, the five main sub-city administrative units are called Boroughs. Agency sub-units for each Borough operate with

some autonomy, and budgets are often divided into Borough-specific budgets. NYC DPR is actively planning to further

centralize operations, a policy we analyze here.

https://data.cityofnewyork.us/City-Government/311-Service-Level-Agreements/cs9t-e3x8
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Fig. 1. The Department of Parks and Recreation of NYC responds to service requests on “Hazard" and “Illegal
Tree Damage" events related to street trees, among others. We find that even conditional on the same category
of incidents, the distribution of the response time (in this case defined by the time from first service request
to the completion of an inspection) varies by Borough.3Moreover, substantial amounts of service requests are
not responded to within the publicly available SLAs, with some others not inspected at all. The empirical
distribution of the response times also does not correspond the priority defined in the SLAs: though hazard
incidents have a looser SLA compared to illegal tree damage incidents (14 days versus 8 days), they are
generally inspected sooner, reflecting their higher average risk rating.

insights on the price of equity (and efficiency) in such allocation settings; (b) extend the model to

incorporate real-world complexities, which can be optimized to produce implementable policies,

using a simulation-optimization framework; (c) empirically optimize policies using actual incident

and inspection data from the New York City Department of Parks and Recreation.

A theoretical model to analyze SLAs. We model SLA design as an optimization problem under the

framework of a queuing network, with decision levers: allocating inspection budgets (inspectors)

to different neighborhoods and scheduling priorities for different types of incidents. We transform

the problem to a convex formulation and simultaneously solve for an optimal budget allocation

plan and inspection scheduling prioritization policy, to find the best, feasible SLA under some

objective function. We show that our model is general enough to allow a large class of objective

functions, encoding both equity and efficiency. Our model can be generalized to accommodate

other administrative policies, such as when the city maintains a centralized inspection team.

We theoretically study this model under a specific class of objectives, where the efficiency loss

corresponds to risk-weighted SLAs across the city, and the equity loss measures the worst efficiency

loss incurred by any neighborhood. Conceptually, we find that the “price of equity” in this setting –

the efficiency loss from implementing the most equitable policy – is small, especially in realistic

settings when risk distributions are similar across Boroughs, even as incident numbers may not be.

Simulation optimization framework to designing SLAs. The stylized model – though tractable

for qualitative insights and a parametric starting point – excludes several real-life components

(including non-Poisson incident arrival rates that are higher than the budget allows addressing)

that prevent its use to optimize an actual city agency’s budget. We thus develop a simulation-

optimization framework to optimize decisions in practice: the simulation inputs historical incident

arrivals and worker capacities over time, simulates daily decisions according to a given policy

(including per-area budget fractions and incident priorities), and calculates efficiency and equity

metrics. Then, we can optimize over a class of policies in an outer loop, such as through a Bayesian

3
These response times are calculated based on public data on inspections from 2015 to present, available at https://data.

cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4

https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4
https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4
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optimization framework. Optimal policies can be validated out-of-sample, such as by simulating

their performance using data from a future time. The framework is thus flexible to incorporate

high-fidelity simulations given a policy.

Empirical characterization of SLAs under different objectives. We empirically apply our simulation-

optimization framework to design service level agreements for the Department of Parks and

Recreation in New York City, for responses to service requests made by residents. We find: (a)

optimal Borough (sub-divisions of NYC) budget allocations differ from status quo allocations, which

are both highly inefficient and inequitable; (b) motivated by an ongoing debate for whether the

agency should centralize response operations, we find that doing so would only provide a modest

benefit over optimal Borough-specific budget allocations; (c) Optimal policies calculated using 2019

data are highly effective (outperforming actual decisions) in future years.

We further find that the empirical price of equity is indeed small: inefficient policies are also

inequitable, and vice-versa. More precisely, adding explicit equity terms in the objective has a

small impact, compared with designing better (even purely for efficiency) budget allocations or

centralizing operations. We explain this finding as follows: inequity often implies inefficiency –

substantial delays in one neighborhood also affect the overall city welfare, and so the space of Pareto

optimal (in terms of efficiency vs equity) allocations is small. This finding suggests a “win-win”

when compared to the status quo: we can improve both city-level outcomes and equity.

The rest of this paper is organized as follows. In the remainder of this section, we introduce related

work. We introduce our model and theoretical results in Section 2, our simulation optimization

framework in Section 3, and our empirical case study in Section 4.

1.1 Related work
Efficiency and equity in government operations. Our application – responses to service requests

made by residents – relates to previous works on “co-production” [Brabham, 2015, Yuan, 2019]

systems such as the 311 system in NYC, where city residents report incidents, triggering the need

for responses. Recently, the upstream reporting behavior of city residents has been well-studied,

and various aspects of inefficiency and inequitable usage have been identified [Agostini et al., 2024,

Hacker et al., 2022, Kontokosta and Hong, 2021, Liu et al., 2023].

More closely related are the works that look into the cities’ responses to various reports, through

the lens of efficiency and equity in public resource allocation. Previous theoretical works on

this topic outline tradeoffs among equity criteria and between efficiency and equity [Freeman

et al., 2020, Mashiat et al., 2022], in areas such as allocation of healthcare resources [Mhasawade

et al., 2021]. Empirical works on this topic mainly focus on agency decision-making, and ask the

question, “are status-quo response decisions equitable and efficient?". Most notably, Singh et al.

[2022] study food inspection operations in Chicago to identify violations of fairness criteria due to

idiosyncratic behavior of inspectors, suggesting algorithmic remedies; Laufer et al. [2022] study the

response to forestry service requests in NYC under capacity constraints, and identify inequity in the

decisions to inspect among neighborhoods, which is further associated with socio-economic factors;

Rahmattalabi et al. [2022] and Jo et al. [2023] consider resource allocation under fairness objectives

in homeless services, pointing out incompatibility between fairness objectives and developing a

fair matching algorithm.

In contrast, considering time-sensitive incidents, our work mainly asks the question “how do

we make the responses more equitable and efficient by adjusting the agency’s resource allocation

policy?” Our work can incorporate insights from the above work: for example, it is possible to

incorporate the incident type and location-specific reporting delay estimates by Liu et al. [2023] into
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our framework – if the city’s objective is to equalize occurrence to resolution end-to-end response

times, as opposed to report to resolution response times.

Design and planning of queuing systems in operations. Our problem broadly falls into the “capacity

and flow assignment" category under the four types of optimization problems tied with the design

and planning of queuing systems outlined by Kleinrock [1975]. Other works that fall into this

category include a large literature on dynamic capacity allocation (e.g., [Andradóttir et al., 2003]),

and in particular, designing hospital operations (e.g., [Bekker and de Bruin, 2010, Cochran and

Roche, 2009, Green, 2006]). More closely aligned with our objectives are the works of Nowak et al.

[2004] and Remesh Babu and Samuel [2019]; both consider service level agreement aware dynamic

capacity allocation in the network service context. However, our work differs from these settings

in that the capacity allocation decisions cannot be frequently adjusted in our setting – once the

city determines on a set of budgets for each Borough, it might take years to revise such decisions,

both due to administrative capacity and the challenge of moving workers to different offices.

Our model builds off of the work of Liu et al. [2001], who consider maximizing the profit from

operations under SLA constraints; they consider the levers of prioritizing and routing different jobs

to different servers, under the Generalized Processor Share [Parekh and Gallager, 1993] method. Our

work introduces a lever of capacity allocation to this setting, but does not consider routing decisions

(in context, it may be both administratively and logistically hard for a worker in one Borough

to respond to incidents in another); these changes, besides being motivated by our application

domain questions, render the optimization problem more tractable, allowing us to analytically

characterize the price of equity under such a model. We further embed this model within an

empirical simulation-optimization framework, finding approximately optimal policies in practice.

2 A STYLIZED MODEL TO DESIGN OPTIMAL SERVICE LEVEL AGREEMENTS
Our model has four aspects under a policy maker’s control: how individual workers are allocated

to incidents, how many workers there are in each neighborhood (Borough), the SLAs promised

for each category (potentially in neighborhood-dependent manner), and an objective function

formalizing their efficiency and equity goals. We further assume that the policy maker knows (can

historically measure) characteristics of incidents, such as their arrival rates and average “riskiness.”

These aspects are related as follows. Together, the worker allocation policy, budgets, and incident

arrival rates determine the distribution of response times for each incident, and thus the Service

Level Agreements. We assume that the policy maker’s objective is a function just of the SLAs and

the system constants (such as incident arrival rates and risk distributions) – together, these aspects

can encompass standard metrics such average and tail response times, and their spatial distribution.

Our goal is two-fold: First, for a given policy objective, formulate and solve a corresponding

(tractable) optimization problem to find an optimal SLA (and hence a worker allocation and budget

policy). Second, characterize how solutions change as the objective function changes, and thus any

potential trade-off between efficiency and equity. We note that our theoretical model is purposely

stylized, to enable tractable insights. In practice, policy design must incorporate elements omitted in

the theoretical analysis; we consider these components in Section 3 within a simulation optimization

framework.

2.1 A queuing model for the inspection scheduling process
We start with a queuing-based model for how incidents are addressed: incidents occur over time,

and join a corresponding queue. Workers service each queue according to an allocation policy over

time, inducing response time distributions for each type of incident.
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The queuing model. The inspection problem is modeled by a queuing network with multi-class

single-server queues. There are two levers of policy: the city allocates worker budgets to Boroughs,

and each Borough manages the allocation of workers to individual incidents.

The queuing network within each Borough operates as follows. We have a set of incident

categories 𝑘 ∈ S (e.g., Hazards versus less urgent incidents) for which we wish to define SLAs.

Each category arrives according to a Poisson process with rate 𝜆𝑘 into their own queues, where

each of these Poisson processes are mutually independent. Inspecting each incident takes up a

random amount of time, distributed according to an Exponential random variable with unit mean

regardless of their category.
4

The city has a budget of 𝐶 , in terms of the total capacity of the servers that can be allocated.

The city first decides the capacity 𝐶𝑏 that it wishes to allocate to each Borough 𝑏 ∈ B, where∑
𝑏∈B 𝐶𝑏 ≤ 𝐶 . Each Borough 𝑏 maintains its own server with capacity 𝐶𝑏 , serving the queues for

incidents that occur in that Borough.

We assume that within each Borough, the server is managed with the Generalized Processor

Share (GPS) scheme [Parekh and Gallager, 1993]. Under the GPS scheme, each SLA category

is assigned a weight 𝜙𝑘,𝑏 in each Borough 𝑏, such that

∑
𝑘∈S 𝜙𝑘,𝑏 = 1. At any given time 𝑡 , on

a server with capacity 𝐶𝑏 , the (potentially fractional)
5
capacity devoted to category 𝑘 ∈ S is

𝐶𝑏𝜙𝑘,𝑏/
∑
𝑘 ′∈S∩K(𝑡 ) 𝜙𝑘 ′,𝑏 , where K(𝑡) denotes the set categories for which there is at least one

pending incident (there is a “backlog” of incidents).
6
Within each queue, we assume a first-come-

first-serve discipline of service. At a high level, 𝜙𝑘,𝑏 determines the relative priority of different

incident categories within a Borough – for example, a Hazard category may be higher risk on

average, and so prioritized on average.

Why limit to this class of policies? (a) GPS policies are flexible and robust: on a server with capacity

𝐶𝑏 , the minimum capacity devoted to any SLA category 𝑘 would be 𝐶𝑏𝜙𝑘,𝑏/
∑
𝑘 ′∈S 𝜙𝑘 ′,𝑏 = 𝐶𝑏𝜙𝑘,𝑏

while there are incidents in this category in backlog, so the backlog of other SLA categories will not

affect our response to category 𝑘 ; on the other hand, the maximum possible capacity devoted to any

SLA categories is the entire capacity 𝐶𝑏 , whenever they are the only SLA category in backlog. (b)

The policy reflects what is practiced by city agencies: a certain portion of workers would respond

to certain categories of incidents, with adjustments from day to day based on backlog. (c) As we

will show next, GPS policies naturally lead to well-defined notions of service level agreements.

Under this model, the decision variables for the city are to set the Borough level budgets 𝐶𝑏 ; for

each Borough, it is to set their own incident allocation weights 𝜙𝑘,𝑏 .

Response times and SLAs. Reflecting practice, we consider SLAs in the following form:

“In Borough 𝑏, fraction 1-𝛼𝑘,𝑏 of category 𝑘 incidents are responded to within time 𝑧𝑘,𝑏 ,"
where 𝛼𝑘,𝑏 ∈ (0, 1). It is thus important to quantify the tail distributions of the response time to

each SLA categories. Mathematically, let 𝑇𝑘,𝑏 be the generic random variable for the response time

of category 𝑘 ∈ S incidents, an SLA of the above form corresponds to

P[𝑇𝑘,𝑏 ≥ 𝑧𝑘,𝑏] ≤ 𝛼𝑘,𝑏 . (1)

Assuming that these incidents are being processed on a server with capacity 𝐶𝑏 , and the GPS

weight of this category satisfies 𝐶𝑏𝜙𝑘,𝑏 > 𝜆𝑘,𝑏 (i.e. there is guaranteed to be enough capacity to

inspect all incidents of this category), following our above assumptions and classical results in

4
Our theoretical framework can be easily extended to different processing times by category.

5
Fractional capacity can be interpreted as randomized allocation.

6
To finish formally describing the system, as standard in such queuing systems, we assume that there is an additional

category of work that is always backlogged for which the city provides no guarantees – the worker services this category

when there is no backlog in categories 𝑘 ∈ S.
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queuing theory (e.g., see [Kleinrock, 1975] and [Liu et al., 2001]), the tail probability of the response

time distribution is bounded by

P[𝑇𝑘,𝑏 ≥ 𝑧𝑘,𝑏] ≤ exp

(
−(𝜙𝑘,𝑏𝐶𝑏 − 𝜆𝑘,𝑏)𝑧𝑘,𝑏

)
. (2)

Combining Equation (1) and Equation (2), to satisfy an SLA, a sufficient condition is to ensure

−(𝜙𝑘,𝑏𝐶𝑏 − 𝜆𝑘,𝑏)𝑧𝑘,𝑏 ≤ log(𝛼𝑘,𝑏), (3)

which we will henceforth refer to as the “SLA constraint". Intuitively, this constraint states that:

when𝐶𝑏 budget is allocated to Borough 𝑏, and category 𝑘 is assigned a GPS parameter 𝜙𝑘,𝑏 , then at

least 1 − 𝛼𝑘,𝑏 fraction of category 𝑘 incidents in Borough 𝑏 should be inspected within 𝑧𝑘,𝑏 days,

i.e., the SLA would be 𝑧𝑘,𝑏 days. To simplify notation, we will consider log(𝛼𝑘,𝑏) = 𝛼 for all SLA

categories 𝑘 . Note that, since 𝛼𝑘,𝑏 ∈ (0, 1), 𝛼 < 0.

Policy maker objective. From the perspective of the city, the objective broadly contains two parts.

First, SLAs across the whole city should reflect the principle of efficiency, in that more urgent

incidents should be addressed sooner: if a more hazardous incident is left unattended for one day,

the amount of risk it poses to surrounding residents is larger than a less hazardous one. However,

since responding to service requests is a public service, the city must treat different people equitably:

residents from different areas should not receive dramatically different levels of service.

We define two functions to capture these notions. Denote 𝑔(z) and 𝑓 (z) as the efficiency loss

function and the equity loss function, respectively, meaning a higher value of these functions

represents less efficient and less equitable SLAs. We assume that both these functions are non-

decreasing with respect to each element of z, which are the SLAs assigned, and are convex in z.
Monotonicity is natural: increasing the SLA for one category of incidents while others remain the

same represents an absolute deterioration in the level of service, and should not lead to Pareto

improvement in either efficiency or equity. The intuition behind convexity is that the marginal cost

of worsening SLAs is increasing. Within our stylized model, these assumptions lead to tractable

optimization and, as we show, encompasses a large class of metrics.

2.2 An optimization problem for optimal SLAs
Putting this together, our optimization task is as follows.

min

z,𝜙,𝐶𝑏

𝐿(z) = 𝑔(z) + 𝑓 (z) (4a)

s.t. − (𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏)𝑧𝑘,𝑏 − 𝛼 ≤ 0, ∀𝑘 ∈ S, 𝑏 ∈ B, (4b)∑︁
𝑘∈S

𝜙𝑘,𝑏 ≤ 1, ∀𝑏 ∈ B (4c)∑︁
𝑏∈B

𝐶𝑏 ≤ 𝐶, (4d)

𝜙𝑘,𝑏 ≥ 0, 𝑧𝑘,𝑏 ≥ 0,𝐶𝑏 ≥ 0. (4e)

The objective (4a) reflects both efficiency and equity losses, as functions of the SLAs z; constraint
(4b) ensures that the solution meets the set of SLAs encoded in z, where the 𝛼 comes from our

definition of SLAs in equation (3); constraint (4c) comes from the GPS scheduling scheme; constraint

(4d) enforces the overall budget constraint across Boroughs. As defined, problem (4) is non-convex

as the Hessian of (4b) is not positive semi-definite. However, this problem can be reformulated to a

convex program that has equivalent optimal solutions.
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Proposition 2.1. Let x−1 be the element-wise reciprocal of x. Consider the reformulated problem.

min

x,𝐶𝑏

𝐿̃(x) = 𝑔(−𝛼x−1) + 𝑓 (−𝛼x−1) (5a)

s.t.
∑︁
𝑘∈S

𝑥𝑘,𝑏 ≤ 𝐶𝑏 −
∑︁
𝑘∈S

𝜆𝑘,𝑏, ∀𝑏 ∈ B (5b)∑︁
𝑏

𝐶𝑏 ≤ 𝐶, (5c)

𝑥𝑘,𝑏 > 0,𝐶𝑏 ≥ 0. (5d)

The reformulated Problem (5) is convex. Let {z∗, 𝜙∗,𝐶∗
𝑏
} and {x∗,𝐶∗

𝑏
} be the set of optimal solutions

to Problems 4 and 5, respectively. Then we have

𝑧∗
𝑘,𝑏

= − 𝛼

𝑥∗
𝑘,𝑏

, and 𝐿(z∗) = 𝐿̃(x∗).

The proof relies on the convexity and monotonicity of the objective function and is deferred

to the Appendix. Given these properties, we will rely on solving Problem (5) in our subsequent

analysis, and backtrack to find the optimal solutions to Problem (4). Note that the 𝛼 term in the

objective comes from our definition of the SLAs, and for general 𝑔 and 𝑓 cannot be omitted.
7

Model discussion. What does this model capture? Namely, the four aspects under a policymaker’s

control. It captures how individual workers are assigned to each incident, through the GPS scheme

and the decision variables 𝜙 ; it captures how many workers are allocated to each Borough, through

the capacity of the Borough servers using decision variables 𝐶𝑏 ; it captures the SLAs promised for

each category and Borough through decision variables 𝑧𝑏,𝑘 ; and finally, the objective function is

open to configuration for policymakers to reflect their efficiency and equity goals.

We note that this model is also stylized in several crucial respects, that render it inappropriate to

use to design actual government policies; we discuss some of these aspects in detail in Section 3.1,

when detailing our simulation-optimization framework. In this section, we use the stylized model to

draw insights on the structure of optimal policies. Furthermore, here we consider the administrative

policy that the city first allocates budgets to Boroughs, and then Boroughs manage their responses.

Crucial for the empirical analysis, our model can be generalized to other administrative policies,

such as when the city manages a centralized server, or when budgets cannot be allocated and must

stick to status quo levels. We will introduce these administrative policies in Section 3.2.

2.3 Analysis of the optimization model under specific objectives
Proposition 2.1 satisfies our first goal of formulating a tractable optimization problem to determine

SLAs, budgets, and allocation policies. Here, we characterize the solutions of this optimization

problem, for specific instantiations of the efficiency and equity objectives and relative weightings,

to understand efficiency and equity tradeoffs in our allocation problem over time.

Risk-rating-based objective functions. An important aspect of an incident is the risk it poses if

unaddressed (for example, the danger posed by a tree falling on a person or power line).
8
We

assume that we can measure the average risk rating of 𝑟𝑘,𝑏 for incidents of category 𝑘 in Borough 𝑏.

7
When a function 𝑙 ( ·) is not homogeneous, the ordering may not be preserved when each argument is multiplied by a

scaler: 𝑙 (x) > 𝑙 (y) . 𝑙 (−𝛼x) > 𝑙 (−𝛼y) , for some 𝛼 < 0.

8
For example, in our empirical application motivation, we consider allocation decisions for inspections and work orders for

incidents by the NYC DPR; a primary outcome for such inspections is a risk assessment, leading to risk ratings. Such risk

ratings are then indeed used to determine work order scheduling priorities.
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Motivated by the importance of heterogeneity in risk ratings, we define the following risk-based

cost function for each Borough:

Cost𝑏 (z) =
∑︁
𝑘∈S

𝜆𝑘,𝑏𝑟𝑘,𝑏𝑧𝑘,𝑏,∀𝑏 ∈ B, (6)

which represents the sum of risk-rating-weighted SLAs in one Borough, and subsequently define

these efficiency and equity loss functions:

𝑔(z) =
∑︁
𝑏∈B

Cost𝑏 (z), (7)

𝑓 (z) = max

𝑏∈B
Cost𝑏 (z), (8)

𝐿𝛾 (z) = 𝛾𝑔(z) + (1 − 𝛾) 𝑓 (z), (9)

where we assume risk rating 𝑟 ’s are given as data, and 𝛾 ∈ [0, 1] is a hyperparameter for the relative

importance of the objectives: the larger 𝛾 is, the more weight is put on efficiency. In words, 𝑔(z)
represents the sum of costs across all Boroughs as the loss of efficiency, and 𝑓 (z) measures the

largest cost of any Borough as the loss of equity. These formalizations also induce interpretable

characterizations of the optimal solutions, corresponding to common notions of efficiency and

equity. Given these functions, we now analyze the efficiency-equity tradeoff in allocation.

Proposition 2.2. [Extreme efficiency prioritization] When 𝛾 = 1, the optimal solution to Problem (5)

is such that 𝑥𝑘,𝑏 ∝
√︁
𝜆𝑘,𝑏𝑟𝑘,𝑏 . Consequently, the optimal solution to Problem (4) is such that

𝑧𝑘,𝑏 ∝
1√︁

𝜆𝑘,𝑏𝑟𝑘,𝑏
, ∀𝑘, 𝑏.

In other words, the optimal solution when we only care about efficiency is such that each type

of incident will be assigned an SLA that is inversely proportional to the square root of its risk

level: more urgent incidents should be inspected sooner. Interestingly, note that budgets may differ

substantially across Boroughs, but per-incident service guarantees remain a function of their risk.

Proposition 2.3. [Extreme equity prioritization] When 𝛾 = 0, the optimal solution to Problem (5) is
such that

∑
𝑘∈S 𝑟𝑘,𝑏/

(
𝜆𝑘,𝑏𝑥𝑘,𝑏

)
= 𝑀 for some 𝑀 , for all Boroughs 𝑏 ∈ B. Consequently, the optimal

solution to Problem (4) is such that

Cost𝑏 (z) =
∑︁
𝑘∈S

𝜆𝑘,𝑏𝑟𝑘,𝑏𝑧𝑘,𝑏 = 𝑀, for some𝑀,∀𝑏 ∈ B .

In other words, the optimal solution when we only care about equity is such that all Boroughs

would experience the same cost. Note that, within a Borough, more risky categories would still have

shorter SLAs in this solution; in fact, they could have even more short SLAs than in the extreme

equity case: for example, when there is only one category per Borough, 𝑧𝑘,𝑏 ∝
1

𝜆𝑘,𝑏𝑟𝑘,𝑏
.

What are the practical implications of these two extremes? In the extreme efficiency case, all

SLA categories are assigned SLAs that are only related to their risk level: the higher the risk rating,

the sooner the incidents are promised to be inspected, without any consideration for where these

incidents may be. However, in practice, each Borough has different geographical characteristics

and thus different kinds of potential incidents – i.e., average risk ratings and incident arrival rates

differ by area. Suppose all incidents in one Borough are uniformly riskier than those in another

Borough; then, only optimizing for efficiency may result in a large divide in the level of service that

the two Boroughs receive: one Borough will receive worse (risk-weighted) service. An equity term

balances the differences: in the extreme equity case, there is a strict parity among the costs in all

Boroughs. We formalize this discussion next, characterizing the “efficiency cost” of pursuing equity.



Zhi Liu and Nikhil Garg 9

When is the efficiency and equity trade-off substantial?We consider the tradeoff between

these objectives. Akin to the algorithmic fairness literature, we define price of equity as the difference
in efficiency loss between most equitable and the the most efficient solutions.

Consider a simple case, wherewe are only concernedwith the SLA of a single category of incidents

(|S| = 1, and hence we omit the subscript indicating category) in three Boroughs (B = {1, 2, 3}).
Then following Proposition 2.2 and Proposition 2.3, denoting the solution under extreme equity

and efficiency prioritization as z𝑒𝑞 and z𝑒 𝑓 , respectively, we arrive at the following result:

Proposition 2.4. [Price of equity] The price of equity can be measured by:

𝑔(z𝑒𝑞) − 𝑔(z𝑒 𝑓 ) = −𝛼 1

𝐶 − 𝜆1 − 𝜆2

[√︁
𝜆1𝑟1 −

√︁
𝜆2𝑟2

]
2

≥ 0.

In words, the extra cost of efficiency incurred by pursuing the most equitable solution compared

with the most efficient solution is always non-negative and depends on two factors: (1) the relative

difference between severity (measured in both risk and quantity) of incidents in the Boroughs 𝜆1𝑟1
and 𝜆2𝑟2, and (2) the amount of extra budget slack the agency has 𝐶 − 𝜆1 − 𝜆2 (total server budget
𝐶 minus the arrival rates).

When is the trade-off negligible? (1) When 𝜆1𝑟1 = 𝜆2𝑟2, i.e., both Boroughs face similarly severe

incidents, we see that in this case, the price of equity 𝑔(z𝑒𝑞) − 𝑔(z𝑒 𝑓 ) = 0. Otherwise, note that

the Borough with the riskier incidents faces a higher cost at the most efficient solution. The

intuition behind this is that, when the two Boroughs have the same risk profile, they are essentially

indistinguishable by simply observing the risk of incidents that arrive. Thus, the problem becomes

one of budget allocation between two homogenous groups. Similar to results from other works in

the algorithmic fairness literature (e.g., [Cohen et al., 2022]), there is no trade-off between equity

and efficiency – these two objectives are perfectly aligned. (2) When 𝐶 − 𝜆1 − 𝜆2 is large, i.e., the
city has enough budget to easily address all incidents quickly, and so that there is little tradeoff.

In contrast, when is the trade-off substantial? We see that two conditions are necessary: (1)

when the two Boroughs face sufficiently different situations (measured by

��√𝜆1𝑟1 − √𝜆2𝑟2��), and
(2) when the excess budget 𝐶 − 𝜆1 − 𝜆2 is sufficiently small. This is also analogous to the equity-

efficiency trade-off in other algorithmic decision-making setting. For example, in college admissions

(e.g., [Garg et al., 2020]), if the admission capacity of a school is larger than the applicant pool,

then admitting everyone would be both efficient and equitable; it is only when the capacity is

smaller than the applicant pool and different groups of applicants are disparate when we observe a

significant equity-efficiency trade-off. In our setting, when the excess budget 𝐶 − 𝜆1 − 𝜆2 is large,
no matter which budget allocation we choose, incidents in both Boroughs can be inspected within

a reasonable time (as can be observed from the formula for 𝑧𝑒𝑞 and 𝑧𝑒 𝑓 ); it is only when the excess

budget is small and incidents in the two Boroughs have disparate risks would we expect to see a

large trade-off when prioritizing one Borough over another.

Similarly, we can also derive the following result, on the price of efficiency: the equity loss

associated with adopting the most efficient solution.

Proposition 2.5. [Price of efficiency] Without loss of generality, assume 𝑟1 ≥ 𝑟2. The price of
efficiency can be measured by

𝑓 (z𝑒 𝑓 ) − 𝑓 (z𝑒𝑞) = −𝛼 1

𝐶 − 𝜆1 − 𝜆2

√︁
𝜆2𝑟2

(√︁
𝜆1𝑟1 −

√︁
𝜆2𝑟2

)
≥ 0.

As we’ll see in the remainder of this paper, these insights extend to less stylized settings of

incident arrival rates and agency policies.



Zhi Liu and Nikhil Garg 10

3 SIMULATION OPTIMIZATION FRAMEWORK
Above, we formulate a theoretically tractable policy optimization problem, whose solutions yield

insights regarding the tradeoffs between efficiency and equity in our temporal allocation setting.

However, the optimal policies are not generally deployable – such theoretical tractability requires

omitting modeling components that are important in practice.

Rather, we advocate a simulation-optimization approach for such policy optimization: (a) specify

input data (here: incident arrivals and agency city-wide capacities), either calibrated to historical

data or using it directly; (b) determine a class of policies over which one will optimize (e.g., GPS

policies with Borough budgets, incident prioritization, etc); (c) simulate a given policy over time

and evaluate its performance; (d) optimize over policies ; (e) Finally, evaluate the chosen “optimal

policy” out-of-sample (such as using input data from another historical time period) to understand

their robustness and to approximate future performance.

This procedure is of course more computationally expensive than solving the convex optimization

Problem (5), which takes less than a second to solve (as opposed to the 2.5 days of computation

required in our empirical application). However, policies are not updated often (e.g., agencies

often plan budgets on a yearly cadence), and so the cost is not prohibitive. Such an approach can

further trade off optimization tractability with modeling fidelity, by adjusting the complexity of the

simulator and class of policies.

In this section, we provide methodological details for this procedure as applied to optimize NYC

agency service allocation policies. The next section provides application data details and results.

3.1 Why a simulation optimization framework?
Our theoretical optimization framework makes at least two simplifications that prevent its use

in practice in our application: (a) Historically, not all incidents are inspected: the number of service

requests received far exceeds the capacity of the city agency (in our application, historical data

suggests only around 60% of all requests are responded to); (b) as seen in Figure 4, incidents do not

arrive according to a homogeneous Poisson arrival rate: there are daily variations not necessarily

explainable by Poisson variation, seasonal effects, and emergency storm periods. As we explain

next, these components prohibit tractable (convex) policy optimization.

Over-capacity queues and dropping incidents. Not all incidents, even in daily operating periods

(outside of emergency periods), are inspected by the agency, let alone fixed through a work order.

As expected, the fraction of incidents dropped correlates with incident importance (most Hazard

reports are inspected, but few Root/Sewer/Sidewalk reports are); however, incident drops can also

be an undesirable implication of historical policies: e.g., if a Borough is relatively understaffed,

then it may be forced to drop more incidents. Thus, we need to make the fraction of incidents

inspected a variable, either directly optimized as part of the policy or as depending on the capacities

and prioritization. However, it turns out that doing so while maintaining theoretical tractability is

challenging. Let 𝑝𝑘,𝑏 for each category and Borough pair denote the fraction of service requests

inspected.

First, suppose we fix constants 𝑝𝑘,𝑏 and the total budget𝐶 as given and estimated from the histori-

cal data, i.e., substitute 𝜆𝑘,𝑏 in Problem (4) with 𝑝𝑘,𝑏𝜆𝑘,𝑏 . Then, wewould find that
∑
𝑏∈B

∑
𝑘∈S 𝑝𝑘,𝑏𝜆𝑘,𝑏 =

𝐶 , meaning that the total budget is the same as the total arrival rate of incidents. In this case, the

only feasible solution would be that for all (𝑘,𝑏) we have 𝐶𝑏𝜙𝑘,𝑏 − 𝑝𝑘,𝑏𝜆𝑘,𝑏 = 0 (i.e., the arrival rate

and the service rate of the queue are the same), and thus the SLAs 𝑧𝑘,𝑏 could not be well defined.

Second, instead suppose 𝑝𝑘,𝑏 is a decision variable, and we add a term ℎ in the objective to

penalize dropping incidents. The new problem, though still having a simple form, becomes either
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intractable or trivial, depending on the objective function:

min

z,𝜙,𝐶𝑏 ,p
𝐿(z, p) = 𝑔(z) + 𝑓 (z) + ℎ(p) (10a)

s.t. − (𝐶𝑏𝜙𝑘,𝑏 − 𝑝𝑘,𝑏𝜆𝑘,𝑏)𝑧𝑘,𝑏 − 𝛼 ≤ 0, ∀𝑘 ∈ S, 𝑏 ∈ B, (10b)∑︁
𝑘∈S

𝜙𝑘,𝑏 ≤ 1, ∀𝑏 ∈ B (10c)∑︁
𝑏∈B

𝐶𝑏 ≤ 𝐶, (10d)

𝜙𝑘,𝑏 ≥ 0, 𝑧𝑘,𝑏 ≥ 0,𝐶𝑏 ≥ 0, 𝑝𝑘,𝑏 ∈ [0, 1] . (10e)

If the objective function ℎ(p) ≡ 0 (i.e., deciding not to inspect incidents does not incur penalties),

then trivially we should set 𝑝𝑘,𝑏 = 0,∀𝑘,𝑏, so that all the SLAs are 0 days – not inspecting anything

would result in the shortest response times of the things that are inspected. However, this would

result in the solution being irrelevant in practice. On the other hand, if the objective function

ℎ(p) is some non-trivial function of p, then the non-convex nature of Constraint (10b) renders the

problem intractable, even for simple forms of ℎ(p).

Arrival rates and service times. The theoretical analysis further depended crucially on incidents

arriving according to a homogeneous Poisson process, and service times (how long it takes a worker

to address an incident) being Exponentially distributed; these assumptions make it simple to derive

the tail probabilities for how long it takes for an incident to be serviced, which are part of the SLA.

While such assumptions are common in the queuing theory literature for tractability, they are not

suboptimal for our setting for several reasons.

First, incident arrival rates do not necessarily follow homogeneous Poisson processes, displaying

spatial and temporal (intra-week and seasonal) correlation, both during emergency periods and in

routine operations. Second, the time it takes to address an incident is not necessarily Exponentially

distributed: for example, in our inspection allocation application, an inspector travels to an incident

and conducts an inspection, which may take an approximately constant amount of time; some

incidents may require followup inspections at a later date, which would increase the total time it

takes to address that incident but does not preoccupy the inspector’s time in the meanwhile.

Suppose one wanted to incorporate these elements into Problem (4), using alternate functional

forms of arrival and service times, for example incorporating spatial and temporal correlation of

arrivals. Theoretically, this would require replacing constraint (4b) with another constraint that

better reflects the mapping from budgets and prioritizations to the tail inspection probabilities that

are induced; closed-form solutions may be intractable, depending on the functional forms chosen.

Empirically, one would need to calibrate the functions using real-world data, and high-fidelity

calibration may be challenging even if the theoretical challenge could be overcome.

In light of these obstacles, we leave theoretical advances to overcome them for future work and

employ a simulation-based approach to finding near-optimal inspection policies in practice, while

retaining the core of our principled approach – a parametric GPS scheme.

3.2 Empirical simulation-optimization framework
We now describe our simulation-optimization framework, informed by the above discussion. The

agency inspects incidents every day, over a 10-year simulated period. As overviewed above, we

need to specify the input data, policy class, and evaluation.
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3.2.1 Input data: historical inspection arrivals and agency capacity. We directly use historical

incident arrivals (time stamps, locations, and category) over a full year (in our application, 2019),

with incidents arriving each day according to their true arrivals. As inspection budgets may vary

throughout the year and week (e.g., fewer inspections on weekends), for each day we input the

number of incidents from that year (in our application, 2019) the agency inspected throughout the

entire city that day. (Of course, the policy will determine how this overall daily budget is distributed

across Boroughs and incident categories). We repeat the year of data 3 times in each simulation, to

further minimize boundary effects. These choices enable simulation realism without needing to

calibrate functions for incident arrivals and overall capacity.

3.2.2 Policy class. We optimize over two classes of policies: Borough budget GPS policies as in

our theoretical model, and one with city-wide budgets that allow more flexible cross-Borough

allocation in response to real-time queue lengths.

Borough budget GPS policies. Each policy consists of two levers, identical to our GPS policy

scheme described above: a set of budget allocations {𝐶𝑏} to each Borough that describes the fraction
of the daily capacity available to that Borough (without loss of generality, we standardize them so

that

∑
𝑏 𝐶𝑏 = 1); and two sets of parameters {𝜙𝑘,𝑏} and {𝑝𝑘,𝑏}, which indicates how each Borough

should manage their inspections under a GPS scheduling scheme, and what fraction of each type

of incidents the agency intend to physically inspect.

City budget policies. In addition to evaluating Borough budget policies (where the city agency has

two levers: budget allocation to Borough subdivisions and managing queues within each Borough),

we consider another class of policies that assumes the city agency only manages one centralized
server, i.e., it can flexibly allocate its workers across Boroughs in reaction to current queues, without

needing to worry about e.g., travel time. We refer to this type of policy as city budget policies. City
budget policies allow for more flexibility compared to each Borough managing its own server, as

when one Borough is experiencing a surge of inspection requests, the capacity that would have been

dedicated to other Boroughs can be concentrated on inspecting these. This added flexibility may

induce higher administrative and logistic expenses: inspectors are usually stationed within each

Borough, and there is a cost to transition them between Boroughs. Under this class of policies, the

only lever is how the inspections should be managed, which is specified by two sets of parameters

{𝜙𝑘,𝑏} and {𝑝𝑘,𝑏}.

We note that these policies are not exhaustive or are likely to describe exactly how the agency

behaves. However, it accurately reflects the agency data and our conversations with agency prac-

titioners. Higher fidelity policies and simulators can be designed (e.g., those that incorporate

city budgets but with travel costs for inspectors, spatial grouping of inspected incidents, or more

deterministic prioritization of the highest priority incidents), at the cost of an increase in parameters.

3.2.3 Simulation given a policy and input data. We now describe our simulation. For precision, we

detail the Borough budget GPS policy simulation; we detail the simulation process and input data for

the city-wide budget policies in Appendix A.2 (in summary, the historical data used as input is the

same, and we only make minor changes to the input policy parameters and the way counterfactual

inspections are made using these policy parameters). We make use of two hyperparameters, review

period length 𝐷 and first-come-first-serve (FCFS) violation 𝜌 to calibrate the simulator to historical

inspections. For a period indexed by 𝑡 ∈ [𝑇 ] := {1, 2, . . . ,𝑇 }, our simulation process takes in

historical arrivals of inspection requests N𝑡
𝑘,𝑏

, 𝑡 ∈ [𝑇 ],∀𝑘, 𝑏, and historical city-wide inspections
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performed 𝐼 𝑡 , 𝑡 ∈ [𝑇 ] on these incidents on each day, and simulates outcomes (whether and when

each incident is inspected) under counterfactual policies.

On each day 𝑡 , N𝑡
𝑘,𝑏

incidents of category 𝑘 in Borough 𝑏 arrive, and are immediately placed in

their respective queues, waiting to be inspected. To decide the counterfactual number of inspections

in each Borough on day 𝑡 , we distribute the historical total inspections count 𝐼𝑡 among Boroughs

according to a Multinomial distribution governed by the budget distribution policy {𝐶𝑏}:

{𝐼 𝑡
𝑏
} ∼ Multinomial(𝐼 𝑡 , {𝐶𝑏}),

where 𝐼 𝑡
𝑏
denotes the number of inspections allocated to Borough 𝑏 on day 𝑡 . This choice ensures

that when the number of days in the simulation is large, the number of inspections in Borough 𝑏 is

close to a fraction 𝐶𝑏 of the total number of inspections while allowing for day-to-day fluctuations.

Once 𝐼 𝑡
𝑏
is determined, we further determine the number of inspections for each category of

incident. Assuming the categories currently in backlog are K𝑏 (𝑡), and
∑
𝑘∈K𝑏 (𝑡 ) 𝜙𝑘,𝑏 = Φ𝑏 (𝑡), the

number of inspections on category 𝑘 , denoted by 𝐼 𝑡
𝑘,𝑏

is generated through

{𝐼 𝑡
𝑘,𝑏
} ∼ Multinomial(𝐼 𝑡

𝑏
, {𝜙𝑘,𝑏/Φ𝑏 (𝑡)}),

following the setup of the GPS scheme.
9
In most cases, 𝐼 𝑡

𝑘,𝑏
is smaller than the actual number of 𝑘,𝑏

incidents in the backlog, denoted by 𝐵𝑡
𝑘,𝑏

, and we inspect them randomly, by sampling 𝐼 𝑡
𝑘,𝑏

incidents

from the earliest 𝜌 (𝐵𝑡
𝑘,𝑏
− 𝐼 𝑡

𝑘,𝑏
) + 𝐼 𝑡

𝑘,𝑏
incidents in the backlog.

10

As discussed above, historical incident arrival rates are larger than historical budgets can handle,

so we specify inspection fractions {𝑝𝑘,𝑏} as decision variables. After each period of 𝐷 days, for each

inspection request in the backlog, with probability 1−𝑝𝑘,𝑏 for appropriate 𝑘 and 𝑏, we decide that it

will not be inspected (“dropped”). This mimics such a process in practice: when faced with a list of

inspection requests, inspectors with capacity constraints would only inspect those with perceived

urgency above a certain threshold, and such decisions are reviewed on a weekly or monthly basis.

If the incident is not dropped, it stays in its backlog, awaiting future inspections.

The following pseudo-code provides an overview of this simulation process.

3.2.4 Evaluation metrics. After completing each simulation run, we take the inspected incidents

and calculate the empirical SLAs 𝑧𝑘,𝑏 by evaluating the actual 75 percentile of inspection delays for

category 𝑘 in Borough 𝑏. We further calculate the empirical inspection fraction 𝑝𝑘,𝑏 as the fraction

of inspected incidents over the total number of arrivals. Note that both dropped incidents and

incidents still in the backlog at the end of the simulation are considered uninspected (and thus each

reduces 𝑝𝑘,𝑏 ). For each Borough, we calculate the cost incurred as

Cost𝑏 (ẑ, p̂) =
∑︁
𝑘∈S

𝑟𝑘,𝑏𝑧𝑘,𝑏 + 100𝑟𝑘,𝑏 (1 − 𝑝𝑘,𝑏). (11)

Where 𝑟𝑘,𝑏 is the historical average risk level of an incident of that category and Borough. The

penalty on the uninspected fractions of incidents is designed so that when no incidents are inspected,

the cost incurred is equivalent to having a 100-day SLA.

9
To see this, note that under GPS, the numbers of inspections for all categories are independent Poisson random variables;

conditional on them having a sum of 𝐼𝑡
𝑏
, the distribution of these variables becomes multinomial.

10
This mimics the fact that not all inspections are FCFS: more urgent incidents might receive faster inspection, even if they

are reported later, as we see in historical data. Note that when 𝜌 = 1, it is equivalent to randomly inspecting incidents in the

backlog, and when 𝜌 = 0, it is strictly FCFS.
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Simulation process: adapted to historical data under Borough budget policy framework.

Data: number of days 𝑇 ; historical arrivals {N𝑡
𝑘,𝑏
}; historical inspections performed {𝐼𝑡 }.

Variables: Borough budgets {𝐶𝑏 }; GPS scheduling policy {𝜙𝑘,𝑏 }; target inspection fraction {𝑝𝑘,𝑏 }.
Hyperparameters: review period length 𝐷 ; FCFS violation 𝜌 .

Result: inspected incidents with inspection delay, incidents still in backlog, and incidents dropped.

t← 1, backlog← ∅, inspected← ∅, dropped← ∅.
while t ≤ 𝑇 do

backlog← backlog ∪ N𝑡
𝑘,𝑏

inspections in each Borough {𝐼𝑡
𝑏
} ← Multinomial(𝐼𝑡 , {𝐶𝑏 })

for Borough 𝑏 ∈ B do
number of inspections for each category {𝐼𝑡

𝑘,𝑏
} ←Multinomial(𝐼𝑡

𝑏
, {𝜙𝑏,𝑘/Φ𝑏 (𝑡)});

inspections for each category← backlog with indices Unif

(
𝐼𝑡
𝑘,𝑏

, 𝜌 (𝐵𝑡
𝑘,𝑏
− 𝐼𝑡

𝑘,𝑏
) + 𝐼𝑡

𝑘,𝑏

)
;

inspected← inspections for each category;

backlog← backlog \ inspections for each category;

end
if 𝑡 mod 𝐷 = 0 then

for incident ∈ backlog do
with probability (1 − 𝑝𝑘,𝑏 ), backlog← backlog \ incident, dropped← dropped ∪ incident

end
end
current day← current day + 1;

end

Analogous to Section 2.3, we define the empirical efficiency and equity loss as

𝑔(ẑ, p̂) =
∑︁
𝑏∈B

Cost𝑏 (ẑ, p̂), (12)

𝑓 (ẑ, p̂) = max

𝑏∈B
Cost𝑏 (ẑ, p̂), (13)

and define the objective function as 𝐿𝛾 (ẑ, p̂) = 𝛾𝑔(ẑ, p̂) + (1 − 𝛾) 𝑓 (ẑ, p̂). For a set of values of 𝛾 , we
identify the policy with the smallest objective function value.

3.2.5 Policy optimization. For policy parameters, we perform a random search over the feasible

domain. For example, for Borough budget policies, we first draw a set of budget allocations {𝐶𝑏}
such that

∑
𝑏∈B 𝐶𝑏 = 1, and then draw a set of GPS parameters {𝜙𝑘,𝑏} such that for each 𝑏 ∈ B,

we have

∑
𝑘∈S 𝜙𝑘,𝑏 = 1. We generate 20,000 sets of policy parameters in total for each policy

class. We note that we conduct a random search out of simplicity; we could also proceed with a

more sophisticated approach to choosing the next policy to simulate, such as through a Bayesian

optimization framework. One challenge with doing so is that we want to simultaneously optimize

for multiple objective functions (parameterized by 𝛾 ), and so would need to choose policies in a

way that does not prioritize a single choice of 𝛾 .

4 EMPIRICAL APPLICATION
We now apply our framework to data from the New York City Department of Parks and Recreation.
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Data Source

(Calendar Year)

Objective

Function

Historical Most efficient Most equitable

2019

Efficiency loss 51,801 17,201 19,950

Equity loss 16,595 5,091 4,981

2021

Efficiency loss 77,975 11,843 15,235

Equity loss 21,246 4,245 4,872

2022

Efficiency loss 89,394 17,238 18,152

Equity loss 21,671 6,908 4,069
Table 1. Performance of the most efficient and most equitable Borough budget GPS policies, when evaluated
on data from 2019 (“training set”), 2021, and 2022 (“test set”), compared with performance evaluated from
historical inspection data. A lower value indicates better performance, and the best performer of each row
is indicated in bold. We omit 2020 due to a large storm dominating the number of incidents; during such
emergency periods, the city activates cross-agency resources and does not follow its regular operations.

4.1 Data and Methods Description
Weuse publicly accessible data shared by the NYCDPR on the NYCOpenData Portal, which includes

both inspection requests submitted to the forestry unit of DPR,
11
and inspections performed.

12

We perform our main policy evaluations and selection using historical data from the calendar

year 2019 and then out-of-sample evaluations on their performance using historical data from

2021 and 2022. During 2019, a total of 93,570 inspection requests were submitted, and a total of

51,610 inspections were performed. We exclude data from 2020 because, as can be observed from

Figure 4, requests and inspections for that year are dominated by a tropical storm in August 2020;

operational policies during such emergency periods differ substantially from those during regular

periods – there are large cross-agency and cross-Borough resources allocated to the affected areas,

and so optimal policies take a different structure and must be calculated separately.

A single policy simulation takes on average 13 minutes on a modern machine using 1 CPU core

and 4GB of RAM (runtime varies across policies but does not exceed 20 minutes for any). As a

result, running 20,000 policy evaluations for each of the two classes of policies using 200 CPU cores

takes around 65 hours. In Figure 5, we present the objective function values of best policy evaluated

versus number of policies evaluated, for both classes of policies and under various efficiency weights

𝛾 . We find that 20,000 policy evaluations are a reasonable amount for the marginal improvement

to be small, indicating that the best policies evaluated in each class are close to the true optimal

policies.
13

4.2 Results
We now analyze optimal policies within each class. Table 1 contains, for each of 2019, 2021, and

2022, the efficiency and equity loss of three policies: the actual policy for that year, and the most

efficient and equitable Borough budget policy, respectively, as calculated using 2019 data. Table 2

details how these policies allocate budgets across Boroughs (where for the historical policy, we

only include 2019). Appendix Table 4 through Table 8 shows how these policies prioritize different

categories and the resulting empirical SLAs in the five Boroughs in 2019. Figure 2 contains the cost

11
https://data.cityofnewyork.us/Environment/Forestry-Service-Requests/mu46-p9is/

12
https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4/

13
We note that, given the nature of simulation optimization methods, obtaining proof of convergence to global optimum is

inherently challenging, whereas our approach already provides reasonably good solutions within acceptable runtime.

https://data.cityofnewyork.us/Environment/Forestry-Service-Requests/mu46-p9is/
https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4/
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Borough

Fraction of

Inspection Requests

Budget Allocation

Historical Most Efficient Most Equitable

The Bronx 0.09 0.11 0.18 0.19

Brooklyn 0.32 0.28 0.35 0.28

Manhattan 0.10 0.09 0.06 0.06

Queens 0.37 0.39 0.35 0.32

Staten Island 0.12 0.13 0.07 0.14

Table 2. Comparison of budget allocation in historical inspections, and the most efficient and equitable
Borough budget policies with the fraction of inspection requests received in each Borough.
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15000
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20000

(a) Historical inspections (b) Most efficient (c) Most equitable

Fig. 2. Cost borne by each census tract under three different inspection policies: (a) historical inspections,
(b) the most efficient Borough budget policy, and (c) the most equitable Borough budget policy, evaluated
on data from 2019. Instead of evaluating 𝑝𝑘,𝑏 (fraction of inspected incidents) and 𝑧𝑘,𝑏 (95% percentile of
inspection delays) for each Borough 𝑏, we evaluate them for each census tract in NYC, which are finer-grained
sub-divisions of Boroughs. We then calculate the cost for each census tract analogous to Equation (11). Note
that the three plots are colored using the same scale. Census tracts with no incidents in 2019 are colored in
gray. Qualitatively, the most efficient and equitable policies are far more similar to each other than they are
to the status quo.

borne by each neighborhood (census tract) in New York City in 2019 according to each of these

policies. Finally, Figure 3 contains the Pareto curve for each policy class, in terms of efficiency and

equity loss. We now overview insights from this analysis.

Optimal Borough budget policies perform well and are robust. Consider Table 1, showing, for the
class of Borough budget GPS policies, the most efficient and equitable policies (those with the

lowest objective value with 𝛾 = 1 and 𝛾 = 0, respectively), and compare their performance with

observed historical inspection plans. We find that the optimal policies are robust to out-of-sample

evaluations: the most efficient policy remains the most efficient policy in future years (among the

three in the table), and the most equitable policy remains the most equitable on data from 2022.

Crucially, both optimal policies substantially outperform historical plans. As we discuss below,

especially out of sample, the equity loss of the most efficient and equitable policies are similar.

Further, note that, as shown in Figure 2, the cost in every Borough can be reduced substantially

through such policies.

Comparing optimal budget allocations in Table 2 with historical inspection requests received,

we find that the optimal allocations differ substantially from historical budgets in some cases. In
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Fig. 3. Pareto frontier of equity-efficiency trade-off, under different classes of policies and historical inspec-
tions. Lower values on each axis indicate better performance: more efficient policies are more to the left, and
more equitable policies are more to the bottom.

particular, the Bronx receives far more budget than historically given and Manhattan receives

far less. Interestingly, while both the Bronx and Manhattan receive a similar fraction of incidents

and similar historical budgets, the optimal (for either efficiency or equity) substantially prioritizes

the Bronx. This may be because in general, incidents from the Bronx are more risky than those

from Manhattan (see Appendix Table 3). Another portion of the improvement may be attributed to

managing the queues effectively through the GPS scheme. For example, historically we see that

even within the same category in the same Borough, inspections may not be first-come-first-served,

thus contributing to the response time distribution having a heavier tail.
14

The Equity-efficiency trade-off is small. In Figure 3, we map the Pareto frontier of equity-efficiency

trade-off under different classes of policies and historical inspections. Restricted to the class of

Borough budget policies, we see that the trade-off is very small. Indeed, Table 1 indicates that the

most efficient policy is only 5% less equitable than the most equitable policy, whereas the most

equitable policy is around 16% less efficient than the most efficient policy.

Drawing insights from Proposition 2.4 and Proposition 2.5, this is because when restricted to the

same category, the difference in average risks of incidents from different Boroughs is relatively

small. In Appendix Figure 6, we show the distribution of risk ratings for Hazards. Though different

Boroughs receive substantially different amount of Hazard incident requests, out of the ones that

were given risk ratings, the distributions are very similar, as are the average risk ratings.

Optimal Borough budget policies are close to optimal city budget policies. We next compare optimal

Borough budget policies with city budget policies – to evaluate an upcoming change that will

partially centralize operations. It is worth pointing out that, the most efficient city budget policy

(representing the left-most tip of the dashed orange line) is a pathological case, where almost

no resources are dedicated to Brooklyn (which receives a large number of inspection requests),

14
In practice, FCFS is intended: currently each inspector faces a dashboard that sorts incidents by category and then by age

when making inspection decisions. However, of the 34,688 incidents that were both reported and inspected in 2019, 20,103

of them were inspected later than at least one same-category, same-Borough incident that was reported later, indicating

that FCFS is not perfectly implemented in practice. Future work is required to understand why there may be deviations.
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and thus improves the overall efficiency at the cost of sacrificing one Borough and significantly

worsening the equity loss. In practice, such a policy would rarely be implemented.

Excluding such a pathological policy, we see that the optimal Borough budget policies are very

close to the optimal city budget policies – though there are some efficiency gains, the equity

gain is almost negligible. Intuitively, such a finding suggests that though we can indeed make

the inspections more efficient by pooling resources and centralizing response, this would not

improve the equity by much – simply pooling resources does not give policymakers more levers in

optimizing for equity.

More importantly, this finding is particularly relevant to practitioners, as it suggests that by

reasonably allocating decentralized budgets and managing the queues well, we can come very close

to the effect of implementing centralized policies, which may be more logistically complicated.

5 CONCLUSIONS
In this paper, we analyze and engineer equitable, efficient government resource allocation policies,

with two government levers: per-area budgets and incident category prioritization. We provide a

theoretical model, formulating a service level agreement design problem. Such a stylized model

provides insights into the price of equity and serves as a foundation for our empirical simulation

optimization framework, which can further capture a large class of policies. We apply our simulation

framework to the design of SLAs in New York City and find that empirically, the trade-off between

efficiency and equity is indeed small, and the optimal policies are robust to out-of-sample data.

We further observe that by allocating resources well, decentralized agencies that are easier to run

practically can perform almost as well as their centralized counterparts, which incur much higher

logistical costs. This provides a valuable argument for an ongoing debate on whether and how

agencies should centralize their response operations.

Several lines of future directions remain. First, our model and empirical analyses capture “non-

emergency” periods, where the fluctuations in incident arrival and inspections are not dramatic. The

ability to capture “emergency” periods, where a surge of incidents arrives, is a valuable extension.

Second, our learned optimal policies outperform status-quo by a large margin. The ability to

understand the contributions to this improvement by efficient budget allocation and effective

management of queues could help us better understand the immediate next steps for agencies to

implement our suggested policy changes. Lastly, our simulation optimization framework allows

for more efficient zeroth order optimization methods, such as Bayesian optimization methods.

Incorporating such methods may enable policymakers to conduct analyses similar to ours more

frequently, thus being able to better adjust policy parameters.
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A SUPPLEMENTARY MATERIALS
A.1 Supplementary information on empirical results
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Fig. 4. Number of service(inspection) requests and inspections by week from 2019 to 2022.
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(b) City budget policy

Fig. 5. Objective function value of best policy evaluated versus number of policies evaluated, under different
values of 𝛾 (efficiency weight in the objective function). After 20,000 evaluations, the marginal improvement is
small for both classes of policies, indicating the best policies evaluated are close to the true optimal policies.

Bronx Brooklyn Manhattan Queens Staten Island

Hazard 6.96 6.82 7.01 7.36 7.44

Illegal Tree Damage 5.91 5.18 5.46 6.69 6.47

Other 6.86 6.19 6.18 7.67 7.75

Plant Tree 5.29 4.65 4.84 4.28 3.67

Prune 5.42 6.62 6.41 7.16 6.67

Remove Tree 6.69 6.73 5.85 7.21 7.14

Root/Sewer/Sidewalk 5.26 4.54 5.14 4.24 4.45

Table 3. Average risk rating of each category of incident in each borough.
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Fig. 6. Distribution of risk ratings for Hazard incidents across boroughs, with means of risk ratings within
each borough marked out.

Category

Historical Most Efficient Most Equitable

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

Hazard 36 0.75 1 1.00 1 1.00

Illegal Tree Damage 156 0.68 2 1.00 3 1.00

Other 149 0.76 1 1.00 5 1.00

Plant Tree 997 0.20 23 1.00 65 1.00

Prune 140 0.78 7 1.00 50 0.99

Remove Tree 197 0.84 1 1.00 2 1.00

Root/Sewer/Sidewalk 390 0.62 5 1.00 25 1.00

Table 4. SLAs and inspection fractions in Bronx, under the optimal Borough budget policies, compared with
outcomes of historical inspections.

Category

Historical Most Efficient Most Equitable

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

Hazard 65 0.82 367 0.68 436 0.86

Illegal Tree Damage 151 0.74 12 0.06 7 0.25

Other 176 0.53 1 1.00 1 1.00

Plant Tree 1393 0.26 15 0.03 24 0.33

Prune 586 0.35 46 0.55 50 0.69

Remove Tree 116 0.85 23 1.00 4 1.00

Root/Sewer/Sidewalk 688 0.72 14 0.02 6 0.01

Table 5. SLAs and inspection fractions in Brooklyn, under the optimal Borough budget policies, compared
with outcomes of historical inspections.
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Category

Historical Most Efficient Most Equitable

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

Hazard 15 0.69 4 1.00 2 1.00

Illegal Tree Damage 305 0.51 17 0.11 10 0.00

Other 182 0.73 3 1.00 11 1.00

Plant Tree 1387 0.15 13 0.00 0 0.00

Prune 273 0.74 410 0.87 485 0.85

Remove Tree 196 0.61 16 0.08 12 0.06

Root/Sewer/Sidewalk 392 0.24 16 0.03 7 0.00

Table 6. SLAs and inspection fractions in Manhattan, under the optimal Borough budget policies, compared
with outcomes of historical inspections.

Category

Historical Most Efficient Most Equitable

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

Hazard 49 0.82 265 0.92 321 0.90

Illegal Tree Damage 477 0.69 1 0.15 2 1.00

Other 159 0.55 0 1.00 1 1.00

Plant Tree 855 0.24 1 0.03 2 0.01

Prune 479 0.33 1 0.06 2 0.42

Remove Tree 172 0.86 2 0.32 4 0.55

Root/Sewer/Sidewalk 595 0.66 2 0.01 1 0.00

Table 7. SLAs and inspection fractions inQueens, under the optimal Borough budget policies, compared with
outcomes of historical inspections.

Category

Historical Most Efficient Most Equitable

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

SLAs

(days)

Inspection

Fraction

Hazard 21 0.58 2 1.00 273 0.86

Illegal Tree Damage 64 0.43 3 1.00 4 0.17

Other 86 0.63 2 1.00 2 1.00

Plant Tree 915 0.23 70 1.00 7 0.01

Prune 55 0.37 70 0.99 2 0.21

Remove Tree 53 0.74 56 1.00 3 0.21

Root/Sewer/Sidewalk 553 0.68 170 0.95 4 0.00

Table 8. SLAs and inspection fractions in Staten Island, under the optimal Borough budget policies, compared
with outcomes of historical inspections.
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A.2 Supplementary information on simulation optimization methods
In this section, we provide more details about the alternative policies that we evaluate within

our empirical analyses.

City budget policy. Under this administrative policy, the city maintains a centralized server (group

of inspectors), and the queues are defined for each {borough, category} pair: we maintain a different

queue for incidents of each specification of {borough, category}).

To generate input to the simulation, we first draw a set of GPS parameters {𝜙𝑘,𝑏} such that∑
𝑘∈S,𝑏∈B 𝜙𝑘,𝑏 = 1. We then set the target inspection fractions {𝑝𝑘,𝑏} by 𝑝𝑘,𝑏 =

𝜙𝑘,𝑏
∑

𝑡 𝐼
𝑡∑

𝑡 |𝑁 𝑡
𝑘,𝑏
| , which is

the ratio between the effective inspection capacity allocated and the total number of inspection

requests. In cases where this ratio exceeds 1, we set 𝑝𝑘,𝑏 = 1 and adjust other parameters to be

higher. We generate 20,000 sets of policy parameters in total. The simulation process for this type

of policy is summarized in the following pseudo-code. Letting K𝑏 (𝑡) be the set of categories in
backlog on day 𝑡 in borough 𝑏, we denote Φ(𝑡) = ∑

𝑘∈K (𝑡 ),𝑏∈B 𝜙𝑘,𝑏 .

Simulation process: under city budget with borough queues policy.

Data: number of days to simulate 𝑇 ; historical arrivals set each day N𝑡
𝑘,𝑏

, 𝑡 ∈ [𝑇 ],∀𝑘,𝑏; historical total
number of inspections performed each day 𝐼𝑡 , 𝑡 ∈ [𝑇 ]; GPS scheduling policy defined by {𝜙𝑘,𝑏 };
target inspection fraction defined by {𝑝𝑘,𝑏 }.

Result: the set of inspected incidents with their response time, the set of incidents still in backlog, and

the set of incidents dropped.

t← 1, backlog incidents← {}, inspected incidents← {}, dropped incidents← {}.
while t ≤ 𝑇 do

for incident ∈ N𝑡
𝑘,𝑏

,∀𝑘,𝑏 do
with probability 𝑝𝑘,𝑏 append incident to backlog, otherwise append to dropped incidents

end
inspections on day 𝑡 in borough 𝑏 ←Multinomial(𝐼𝑡 , {𝜙𝑘,𝑏/Φ𝑏 (𝑡)});
inspected← inspected ∪ inspections on day 𝑡 in borough 𝑏;

backlog← backlog \ inspections on day 𝑡 in borough 𝑏;

current day← current day + 1;
end

Evaluation metrics for alternative policies The evaluation metrics for these alternative policies

are the same for the borough-budget policy, where after each simulation run, we evaluate the

empirical SLAs 𝑧𝑘,𝑏 and the empirical inspection fractions 𝑝𝑘,𝑏 , and calculate the cost incurred by

each borough according to Equation (11).

B OMITTED PROOFS
Proposition 2.1. Let x−1 be the element-wise reciprocal of x. Consider the reformulated problem.

min

x,𝐶𝑏

𝐿̃(x) = 𝑔(−𝛼x−1) + 𝑓 (−𝛼x−1) (5a)

s.t.
∑︁
𝑘∈S

𝑥𝑘,𝑏 ≤ 𝐶𝑏 −
∑︁
𝑘∈S

𝜆𝑘,𝑏, ∀𝑏 ∈ B (5b)∑︁
𝑏

𝐶𝑏 ≤ 𝐶, (5c)

𝑥𝑘,𝑏 > 0,𝐶𝑏 ≥ 0. (5d)
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The reformulated Problem (5) is convex. Let {z∗, 𝜙∗,𝐶∗
𝑏
} and {x∗,𝐶∗

𝑏
} be the set of optimal solutions

to Problems 4 and 5, respectively. Then we have

𝑧∗
𝑘,𝑏

= − 𝛼

𝑥∗
𝑘,𝑏

, and 𝐿(z∗) = 𝐿̃(x∗).

Proof of Proposition 2.1. First we show the convexity of problem 5. Since all constraints are

linear in the decision variables, what remains is to show the objective function 𝐿̃ is convex in x.
Let ℎ(x) = −𝛼x−1, then ℎ(x) is convex in x since ∇2ℎ = −2𝛼x−3I ≻ 0 for positive 𝑥𝑘 . Note that:

𝐿̃(x) = 𝐿 ◦ ℎ(x),
and by assumption, 𝐿 is convex and non-decreasing, following classical results from convex analysis

(e.g., see [Boyd and Vandenberghe, 2004]), 𝐿̃ is convex and non-decreasing.

Next we show the optimal objectives of the two problems coincide. By assumption, for constraint

4b to be feasible, we need 𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏 > 0 and 𝑧𝑘,𝑏 > 0. Thus this constraint is equivalent to:

𝑧𝑘,𝑏 ≥
−𝛼

𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏
, ∀𝑘 ∈ S, 𝑏 ∈ B (14a)

𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏 > 0, ∀𝑘 ∈ S, 𝑏 ∈ B (14b)

However, since we assume 𝐿 to be non-decreasing, and there are no other constraints on z, a
necessary condition for optimality is that the optimal solution z∗ must satisfy inequality 14a as an

equality. This means that at optimality, the set of constraints {z∗, 𝜙∗,𝐶∗
𝑏
} must satisfy are:

𝑧𝑘,𝑏 =
−𝛼

𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏
, ∀𝑘 ∈ S, 𝑏 ∈ B (15a)

𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏 > 0, ∀𝑘 ∈ S, 𝑏 ∈ B (15b)∑︁
𝑘∈S

𝜙𝑘,𝑏 ≤ 1, ∀𝑏 ∈ B (15c)∑︁
𝑏∈B

𝐶𝑏 ≤ 𝐶, (15d)

𝜙𝑘,𝑏 ≥ 0, 𝑧𝑘,𝑏 ≥ 0,𝐶𝑏 ≥ 0. (15e)

Now we make the substitution of 𝑥𝑘,𝑏 = 𝐶𝑏𝜙𝑘,𝑏 − 𝜆𝑘,𝑏 , and this set of constraints equivalently

become

𝑧𝑘,𝑏 =
−𝛼
𝑥𝑘,𝑏

, ∀𝑘 ∈ S, 𝑏 ∈ B (16a)

𝑥𝑘,𝑏 > 0, ∀𝑘 (16b)∑︁
𝑘∈S

𝑥𝑘,𝑏 −𝐶𝑏 ≤ −
∑︁
𝑘∈S

𝜆𝑘,𝑏, ∀𝑏 ∈ B (16c)∑︁
𝑏∈B

𝐶𝑏 ≤ 𝐶, (16d)

𝐶𝑏 ≥ 0, 𝑧𝑘,𝑏 ≥ 0, (16e)

where constraint 15a corresponds to 16a, constraint 15b corresponds to the positivity constraint,

constraint 15c corresponds to 16c, and constraint 15d remains the same. Constraint 16a does not

restrict the feasible region of x and can be further omitted. Furthermore, we find that 𝐿(x) = 𝐿̃(x)
after this substitution. To conclude, at optimality, problem 4 and 5 have equivalent constraints and

equivalent objective functions, thus the following must hold:

𝑧∗
𝑘,𝑏

= − 𝛼

𝑥∗
𝑘,𝑏

, and 𝐿(z∗) = 𝐿̃(x∗).
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We do note that, however, the two problems are not always equivalent: since 𝑧𝑘 can violate

the equality and still be feasible, a feasible solution to 4 may not always correspond to a feasible

solution to 5 after such substitution.

□

Proposition 2.2. [Extreme efficiency prioritization] When 𝛾 = 1, the optimal solution to Problem (5)

is such that 𝑥𝑘,𝑏 ∝
√︁
𝜆𝑘,𝑏𝑟𝑘,𝑏 . Consequently, the optimal solution to Problem (4) is such that

𝑧𝑘,𝑏 ∝
1√︁

𝜆𝑘,𝑏𝑟𝑘,𝑏
, ∀𝑘, 𝑏.

Proof of Proposition 2.2. Since now both the efficiency and fairness loss functions are linear

or piecewise linear in z, we shall drop the constant 𝛼 in the objective of problem 5, and focus on ana-

lyzing the following problem for this and the next proof, which should suffice given Proposition 2.1:

min

x,𝐶𝑏

𝐿̃𝛾 (x) = 𝑔𝛾 (x−1) + 𝑓𝛾 (x−1) (17a)

s.t.

∑︁
𝑘∈S

𝑥𝑘,𝑏 ≤ 𝐶𝑏 −
∑︁
𝑘∈S

𝜆𝑘,𝑏, ∀𝑏 ∈ B (17b)∑︁
𝑏

𝐶𝑏 ≤ 𝐶, ∀𝑏 ∈ B (17c)

𝑥𝑘,𝑏 > 0, ∀𝑘. (17d)

Under the extreme efficiency case, the objective function becomes

𝐿̃1 (x) =
∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏/𝑥𝑘,𝑏 .

Note that(∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏

𝑥𝑘,𝑏

)
×

∑︁
𝑘,𝑏

𝑥𝑘,𝑏 =
∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏 +
∑︁

𝑘,𝑘 ′,𝑏,𝑏′

(
𝜆𝑘,𝑏𝑟𝑘,𝑏

𝑥𝑘 ′,𝑏′

𝑥𝑘,𝑏
+ 𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

𝑥𝑘,𝑏

𝑥𝑘 ′,𝑏′

)
(18)

⇒
∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏

𝑥𝑘,𝑏
=

(
1/

∑︁
𝑘,𝑏

𝑥𝑘,𝑏

) (∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏 +
∑︁

𝑘,𝑘 ′,𝑏,𝑏′

(
𝜆𝑘,𝑏𝑟𝑘,𝑏

𝑥𝑘 ′,𝑏′

𝑥𝑘,𝑏
+ 𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

𝑥𝑘,𝑏

𝑥𝑘 ′,𝑏′

))
(19)

≥
(
1/

(
𝐶 −

∑︁
𝑘,𝑏

𝜆𝑘,𝑏

)) (∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏 +
∑︁

𝑘,𝑘 ′,𝑏,𝑏′

(
𝜆𝑘,𝑏𝑟𝑘,𝑏

𝑥𝑘 ′,𝑏′

𝑥𝑘,𝑏
+ 𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

𝑥𝑘,𝑏

𝑥𝑘 ′,𝑏′

))
(20)

≥
(
1/

(
𝐶 −

∑︁
𝑘,𝑏

𝜆𝑘,𝑏

)) (∑︁
𝑘,𝑏

𝜆𝑘,𝑏𝑟𝑘,𝑏 +
∑︁

𝑘,𝑘 ′,𝑏,𝑏′

(√︄
𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

𝜆𝑘,𝑏𝑟𝑘,𝑏
+

√︄
𝜆𝑘,𝑏𝑟𝑘,𝑏

𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

))
(21)

where the first inequality is by combining constraints 17b and 17c and observing that

∑
𝑘,𝑏 𝑥𝑘,𝑏 ≤ 𝐶−∑

𝑘,𝑏 𝜆𝑘,𝑏 , and the second inequality is by the first-order condition of the functionℎ(𝑥) = 𝑥+ 1

𝑥
, 𝑥 > 0.

Note that the right-hand side of Equation (21) is a constant, that only depends on the problem

parameters 𝜆, 𝑟 and 𝐶 .
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The conditions for these inequalities to become tight are 1)

∑
𝑘,𝑏 𝑥𝑘,𝑏 = 𝐶 − ∑

𝑘,𝑏 𝜆𝑘,𝑏 and 2)

𝑥𝑘,𝑏/𝑥𝑘 ′,𝑏′ =
√︁
𝜆𝑘,𝑏𝑟𝑘,𝑏/𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′ ,∀𝑘, 𝑘 ′, 𝑏, 𝑏′ ⇔ 𝑥𝑘,𝑏 ∝

√
𝑟𝑘,𝑏,∀𝑘, 𝑏, which both hold under

𝑥𝑘,𝑏 =

√︁
𝜆𝑘,𝑏𝑟𝑘,𝑏∑

𝑘 ′,𝑏′
√︁
𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

1

𝐶 −∑
𝑘 ′,𝑏′ 𝜆𝑘 ′,𝑏′

, ∀𝑘,𝑏

and this constitutes a set of feasible solutions to problem 17, we conclude that this is in fact the set

of optimal solutions. Consequently, the optimal solution to problem 4 satisfy

𝑧𝑘,𝑏 = −𝛼
∑
𝑘 ′,𝑏′

√︁
𝜆𝑘 ′,𝑏′𝑟𝑘 ′,𝑏′

(𝐶 −∑
𝑘 ′,𝑏′ 𝜆𝑘 ′,𝑏′ )

√︁
𝜆𝑘,𝑏𝑟𝑘,𝑏

∝
1√︁

𝜆𝑘,𝑏𝑟𝑘,𝑏
.

In general, we note that the arguments used in this proof extends to the case where

𝐿̃1 (x) =
∑︁
𝑘,𝑏

𝑙𝑘,𝑏/𝑥𝑘,𝑏,

and 𝑙𝑘,𝑏 > 0 is some constant that does not depend on specific values of x. The optimal solution

under this objective would generally be

𝑥𝑘,𝑏 ∝
√︁
𝑙𝑘,𝑏,

and consequently

𝑧𝑘,𝑏 ∝
1√︁
𝑙𝑘,𝑏

.

□

Proposition 2.3. [Extreme equity prioritization] When 𝛾 = 0, the optimal solution to Problem (5) is
such that

∑
𝑘∈S 𝑟𝑘,𝑏/

(
𝜆𝑘,𝑏𝑥𝑘,𝑏

)
= 𝑀 for some 𝑀 , for all Boroughs 𝑏 ∈ B. Consequently, the optimal

solution to Problem (4) is such that

Cost𝑏 (z) =
∑︁
𝑘∈S

𝜆𝑘,𝑏𝑟𝑘,𝑏𝑧𝑘,𝑏 = 𝑀, for some𝑀,∀𝑏 ∈ B .

Proof of Proposition 2.3. Under this case, the objective function in problem 17 becomes

𝐿̃0 (x) = max

𝑏∈B

∑︁
𝑘∈S

𝜆𝑘,𝑏𝑟𝑘,𝑏/𝑥𝑘,𝑏 .

We will show that any feasible solution x such that there exists at least two 𝑏1, 𝑏2 ∈ B where∑
𝑘∈S 𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 ≠

∑
𝑘∈S 𝑟𝑘,𝑏2/𝑥𝑘,𝑏2 cannot be the optimal solution.

Without loss of generality, we assume that 𝑏1 is the unique solution to

𝑏 = argmax

𝑏′∈B

∑︁
𝑘∈S

𝜆𝑘 ′,𝑏′𝑟𝑘,𝑏′/𝑥𝑘,𝑏′ ,

and

∑
𝑘∈S 𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 ≥

∑
𝑘∈S 𝑟𝑘,𝑏′/𝑥𝑘,𝑏′ + 2𝜖 for all other 𝑏′ ∈ B, for some 𝜖 > 0. We note that cases

with multiple maximizers can also be analyzed in this manner with an iterative approach.

Next, we pick an arbitrary 𝑘∗, and define

𝜎 = min

{
𝜖𝑥2
𝑘∗,𝑏1

𝜆𝑘∗,𝑏1𝑟𝑘∗,𝑏1 + 𝜖𝑥𝑘∗,𝑏1
,

𝜖𝑥2
𝑘∗,𝑏2

𝜆𝑘∗,𝑏2𝑟𝑘∗,𝑏2 + 𝜖𝑥𝑘∗,𝑏2

}
> 0.

Define a new solution x+, where 𝑥+
𝑘∗,𝑏1

= 𝑥𝑘∗,𝑏1 +𝜎 and 𝑥+
𝑘∗,𝑏2

= 𝑥𝑘∗,𝑏2 −𝜎 , and all other 𝑥+𝑘,𝑏 = 𝑥𝑘,𝑏 .

Since x is feasible, and

∑
𝑘,𝑏 𝑥

+
𝑘,𝑏

=
∑
𝑘,𝑏 𝑥𝑘,𝑏 , by letting 𝐶+

𝑏1
= 𝐶𝑏1 + 𝜎 and 𝐶+

𝑏2
= 𝐶𝑏2 − 𝜎 , we find x+
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must also be feasible. However, we show that the objective function value will decrease. First note

that, under x+,∑︁
𝑘∈S

𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 >
∑︁
𝑘∈S

𝑟𝑘,𝑏1/𝑥+𝑘,𝑏1 = 𝑟𝑘∗,𝑏1/𝑥+𝑘∗,𝑏1 +
∑︁

𝑘∈S,𝑘≠𝑘∗
𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 >

∑︁
𝑘∈S

𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 − 𝜖,

and ∑︁
𝑘∈S

𝑟𝑘,𝑏2/𝑥𝑘,𝑏2 <
∑︁
𝑘∈S

𝑟𝑘,𝑏2/𝑥+𝑘,𝑏2 = 𝑟𝑘∗,𝑏2/𝑥+𝑘∗,𝑏2 +
∑︁

𝑘∈S,𝑘≠𝑘∗
𝑟𝑘,𝑏2/𝑥𝑘,𝑏2 <

∑︁
𝑘∈S

𝑟𝑘,𝑏2/𝑥𝑘,𝑏2 + 𝜖.

In words, under 𝑥+, 𝑏1 remains the unique solution to

𝑏 = argmax

𝑏′∈B

∑︁
𝑘∈S

𝑟𝑘,𝑏′/𝑥𝑘,𝑏′ ,

so

𝐿̃(x+) = max

𝑏′∈B

∑︁
𝑘∈S

𝑟𝑘,𝑏′/𝑥+𝑘,𝑏′ =
∑︁
𝑘∈S

𝑟𝑘,𝑏1/𝑥+𝑘,𝑏1 <
∑︁
𝑘∈S

𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 = max

𝑏′∈B

∑︁
𝑘∈𝐾S

𝑟𝑘,𝑏′/𝑥𝑘,𝑏′ = 𝐿̃(x).

To conclude, for any feasible solution x such that there exists at least two 𝑏1, 𝑏2 ∈ B where∑
𝑘∈S 𝜆𝑘,𝑏1𝑟𝑘,𝑏1/𝑥𝑘,𝑏1 ≠

∑
𝑘∈S 𝜆𝑘,𝑏2𝑟𝑘,𝑏2/𝑥𝑘,𝑏2 cannot be the optimal solution, therefore the optimal

solution to problem 17 must be that there exists some value𝑀 such that

∑
𝑘∈S 𝜆𝑘,𝑏𝑟𝑘,𝑏/𝑥𝑘,𝑏 = 𝑀 ,

for all boroughs 𝑏 ∈ B. Consequently, invoking Proposition 2.1, the optimal solution to 4 is such

that ∑︁
𝑘∈S

𝜆𝑘,𝑏𝑟𝑘,𝑏𝑧𝑘,𝑏 = 𝑀, for some𝑀,∀𝑏 ∈ B .

In general, we note that the arguments used in this proof extends to the case where

𝐿̃0 (x) = max

𝑏∈B
𝑙𝑘,𝑏/𝑥𝑘,𝑏,

and 𝑙𝑘,𝑏 > 0 is some constant that does not depend on specific values of x. The optimal solution

under this objective would generally be

Cost𝑏 (z) = 𝑀, for some𝑀,∀𝑏 ∈ B .

□

Since Proposition 2.5 is a direct corollary of Proposition 2.4, we provide the proof together.

Proof of Proposition 2.4 and Proposition 2.5. In the extreme efficiency prioritization case,

we can directly derive the results from the conclusion in the proof of Proposition 2.2.

For the extreme equity prioritization case, setting

𝜆1𝑟1/𝑥1 = 𝜆2𝑟2/𝑥2 = 𝑀,

we get the following constraints:

𝜆1𝑟1

𝑀
≤ 𝐶1 − 𝜆1,

𝜆2𝑟2

𝑀
≤ 𝐶2 − 𝜆1,

𝐶1 +𝐶2 ≤ 𝐶.
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By summing them together we get
𝜆1𝑟1+𝜆2𝑟2

𝑀
≤ 𝐶 − 𝜆1 − 𝜆2. Now note that the objective function

is non-decreasing in 𝑥 , thus non-increasing in𝑀 , which means at the optimal solution,

𝑀 =
𝜆1𝑟1 + 𝜆2𝑟2
𝐶 − 𝜆1 − 𝜆2

,

which yields 𝑥𝑒𝑞 and consequently the desired 𝑧𝑒𝑞 .

Substituting 𝑧𝑒𝑞 and 𝑧𝑒 𝑓 into definitions of the efficiency loss 𝑔(·) and equity loss 𝑓 (·) yields the
price of equity and price of efficiency results.

□
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