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This paper describes the progress toward development of a multi-modal, multi-state, real-time classi�cation
system to determine the cognitive state of an operator in safety-critical conditions. Three modalities were investi-
gated for potential integration into such a system: electroencephalography (EEG), heart rate variability (HRV),
and galvanic skin response (GSR). The entire system – including data collection, artifact rejection, data analysis,
and mental state prediction – has been developed in a modular fashion. A test bed was set up with data synchro-
nization across modalities and integration with psychological tasks. Several functional tasks were used to collect
data; the most useful experiment placed a subject in a resting state, followed by a mentally engaged state, simulat-
ing inattention and attention, respectively. For each modality, various features were extracted to represent blocks
of data. These features were used to �rst train a machine learning classi�er and then predict whether a block of
data originated from a resting state or a concentration state. This binary classi�cation serves as a basis for future
work toward a system that can classify a spectrum of cognitive states. Several features for each of the modalities
were investigated to �nd the most relevant for classi�cation, and successful features that correlate with the target
mental states were found. Each of the modalities was individually used to predict subject state with an accuracy
that is signi�cantly better (with p < 0.05) than that of a random classi�er with an input of the ratio of the amount
of rest data to concentrated data. GSR and EEG features were combined into a joint classi�cation system reaching
up to 80% accuracy, more accurate than either modality alone. Real-time, multi-modal classi�cation was also im-
plemented for GSR and EEG, which is a major step towards achieving the overall goal of a real-time, multi-modal
state monitoring system. In future work, the HRV features with the highest accuracy should be integrated into
real-time, multi-modal system. Furthermore, the classi�er should be tested with tasks that better simulate a pilot's
operational environment. The work presented in this paper is a proof-of-concept for a real-time, multi-modal,
multi-state classi�cation system and provides a framework for such a system.

Keywords - galvanic skin response, electroencephalography, heart rate variability, cognitive state monitoring,
machine learning

I. Introduction

IN an increasingly computerized society, control of dangerous machinery is often automated, with a human operator
checking instruments and only occasionally intervening. With auto- pilot in the commercial aviation domain, for

example, a pilot does not have to worry about routine control until he or she needs to take over, perhaps suddenly, and �y
the aircraft. In such situations, a pilot can become too relaxed, doze off, or zone out. On the other end of the spectrum,
a novice pilot can be too anxious to safely operate the aircraft. A crew state monitoring system can detect such states
and alert operators and others of the potential danger. This paper describes work done toward the development of such a
system. A testbed was created to integrate multiple sensors, representative features were calculated and analyzed, and a
classi�cation system was developed to predict subject states.

1NASA Space Academy 2013, NASA Glenn Research Center, Cleveland OH.
2AIAA Student Member.
3NASA Glenn Research Center, Code REB, Cleveland, OH.
4University of Michigan, Ann Arbor
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Three physiological modalities were considered: galvanic skin response (GSR), electroencephalography (EEG), and
heart rate variability (HRV). EEG is a measure of voltage changes in the brain due to the �ow of ions in neurons. It
has historically been used for clinical applications such as epilepsy diagnoses but is increasingly being used in brain-
computer interfaces (BCIs) and attention studies. GSR is an autonomic measure of skin conductivity, is typically evoked
by stress, fear, or surprise, and is often used in polygraph and anxiety tests.? Heart rate variability is a measure of variation
in interbeat intervals. Historically, HRV has been used as a strong predictor of mortality following acute myocardial
infarction, but recent research has shown that it correlates with mental engagement and concentration as a physiological
expression of autonomic nervous system (ANS) activity.1; 2

II. Experimental Setup

A. Sensors

An Emotiv Epoc headset (Emotiv, San Francisco, CA) was used to collect EEG data. The Epoc has fourteen EEG
electrodes and two gyros (for the X and Y directions) and is used for both research purposes and brain computer interfaces.
The headset preprocesses the data before sending the data through USB: it downsamples from a sampling rate of 2048 Hz
to 128 Hz , bandpass �lters from 0.16 Hz to 85 Hz, and notches at 50 Hz and 60 Hz (frequencies affected by electrical
noise in Europe and the United States, respectively).

For the measurement of GSR, a NeuLog GSR sensor (NeuLog, www.neulog.com) was used with a NeuLog USB hub
for interface with the computer. This sensor places electrodes on the index and middle �ngers of a subject’s hand; it sends
a very small electrical current between the nodes in order to calculate the conductivity of the skin. Skin conductance
constantly changes and therefore the NeuLog GSR sensor samples at 24 Hz with a 16 bit resolution.

To detect heart rate and the electrocardiogram (ECG), a Zephyr Bioharness (Zephyr Technologies Corp., Annapous,
MD) was used. A chest strap is attached around the torso just below the sternum. Sensors on the strap detect information
such as heart rate, ECG, respiration depth and rate, skin temperature, and incline of the upper body. The data is then
processed by the Bioharness software to provide an output of RR (interbeat) intervals, reported at a frequency of 18 Hz.
For reference, the three individual sensors can be seen in Fig. 1 .

Figure 1. The EEG, GSR, and HRV sensors used in the experimental setup.

B. Functional Tasks

Various experimental tasks were set up in the lab and integrated with the sensors in order to engage a subject in varying
levels of workload. These experiments were chosen to evoke different physiological and cognitive states.

The experimental procedures used in this report were approved by the NASA Langley Research Center Internal Review
Board.

1. Google Earth Flight Simulator

The �rst functional task was the online Google Earth Flight Simulator (GEFS). Using this free software, a subject
operates various aircraft over a range of locations on Earth through a joystick. The experiment was broken up into four
sections: 1) �ve minutes of rest on the ground before takeoff; 2) one minute to takeoff and reach a steady, level �ight;
3) three minutes of steady, level �ight; and 4) two minutes of maneuvers such as a coordinated turn, a barrel roll, and a
ground pass. Sections 1 and 3 were meant to be periods that required low mental engagement and could be de�ned as
inattentive, and sections 2 and 4 were meant to be periods that required a high level of mental engagement and could be
de�ned as attentive. As a proof of concept, the �ight simulator was integrated with the GSR sensor and tested on several
subjects.
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2. Psychology Experiment Building Language

The second functional task was the Psychology Experiment Building Language (PEBL, pebl.sourceforge.net). The
PEBL battery contains various psychological tasks used for numerous applications. Two experiments from the battery
were considered: the Mackworth Clock Test and the Change Detection Task.3 The Mackworth clock test consists of a
small red circle moving around a larger circle, occasionally skipping the adjacent placement on its trajectory. This test is
a sustained attention and vigilance task. The Change Detection task consists of many circles blinking on a screen and, for
a given trial, a single circle is either changing size, color, or location. The subject must actively seek out and report the
change. Accuracy, time, and type of change are among the metrics reported upon completion of the test.

3. Facilitated Rest and Engagement

The �nal functional task investigated incorporated the PEBL Change Detection Task sandwiched by 5 minute blocks
of rest. To induce a state of focus (attention), a subject was engaged in a PEBL Change Detection task. To induce a state
of rest (inattention), the subject was instructed to rest and think of nothing in particular. Data such as accuracy and time
duration of the PEBL task were not considered; rather, the data taken during this experiment for each of the modalities
were analyzed and input into a machine learning algorithm for binary classi�cation of inattentive versus attentive state.

III. Methods

A. Overview

Figure 2 shows the general processing steps for the crew state monitoring system. As data is collected, it is cleaned of
artifacts and noise. The signal to noise ratio (SNR) of the data should be improved as much as possible.

Next, in the most important yet dif�cult stage, features are extracted from the data. The goal is to calculate features
that can represent each block of the data. These features should correlate with the various subject states the system is
trying to detect. The data is �rst split into blocks. Blocks are delimited by time length, number of samples, or the serial
data (identifying each PEBL trial) captured alongside the sensor data in the integrated testbed. Both the length of each
block and the delimitation method are determined by the features and modalities used.

Finally, in the machine classi�cation stage, the extracted features are used to �rst train a machine learning classi�er (a
Support Vector Machine is used) and then classify new data.

Figure 2. General processing �owchart

B. EEG

1. Background

Scalp electroencephalography, since it was �rst used in the 19th century, has become a common tool in the clinic. As
EEG methods and tools have matured, other applications have taken advantage of its relatively cheap and noninvasive na-
ture. In recent years, it has been used in attention studies (such as for ADHD research) and in brain- computer interfaces.4

The Emotiv Epoc itself was originally designed for BCIs but is now also used as a research platform. However, noninva-
siveness comes with the price of a low signal to noise ratio (SNR), because of which the raw data must be preprocessed
and cleaned of artifacts.

Due to its long history, numerous analysis techniques have been developed to analyze EEG data. The most common
EEG processing technique in attention studies literature is frequency analysis. Four main frequency ranges are considered:
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delta (0 - 4 Hz), which increases during slow-wave sleep; theta (4 - 8 Hz), which increases during drowsiness; alpha (8
- 13 Hz), which increases during relaxation; and beta (13 - 30 Hz), which increases when the subject is alert. Research
indicates that the power at these frequencies directly correlates with alertness level.4 Alan Pope uses the ratio of the beta
channel to the theta and alpha channels as an engagement index.5 This ratio is often referred to as the Pope Index in this
paper. However, frequency analysis requires a sensitive sensor, a low-noise environment, and a high sampling rate (from
the Nyquist theorem, at least double the highest relevant frequency).

A more noise resistant technique is to �nd Event Related Potentials (ERPs).6 ERPs are responses (often spikes in
certain electrodes in a time series) due to speci�c events, such as movement, speci�c motor control thoughts, and blinks.
They are most often used in BCIs. Due to high temporal and spatial localization and high amplitudes, event responses
tend to be resistant to noise. However, though useful for seizure detections or BCI, event responses do not provide a direct
measure of general brain activity and alertness level.

Less common than frequency analysis and ERPs are statistical measures such as the variance or kurtosis (measure of
peakedness of data) of the data. These measures are simple to calculate. However, there is limited research available on
the relation of such measures to alertness level, and no correlation may exist between these measures and engagement
level.

Another potential processing method and feature source is independent component analysis (ICA). ICA is a technique
in which the various source components of a signal are recovered. It can be used alongside ERPs to detect speci�c signal
sources. In theory, signals from parts of the brain indicating the type of activity desired can be identi�ed. However,
performing ICA is computationally complex, in both code complexity and runtime, and noisy data severely complicates
identifying activity strains.

2. Open Source Tools

Various open source tools for EEG analysis were �rst considered. EEGLAB, a system built on top of Matlab (but
can run independently) with a sophisticated artifact removal scheme, was �rst used. It can reject many types of artifacts.
For example, Fig. 3 shows an automatically detected blink. However, EEGLAB was not used for several reasons. Most
importantly, EEGLAB does not work in real-time with the Emotiv. Data must be entered into EEGLAB after collection,
and the actual removal process requires some user interaction. Second, EEGLAB rejects too much data. Even in relatively
clean datasets, it rejected up to 90% of epochs in several EEG trials. Finally, using frequency analysis for artifact rejection
requires the Matlab Signal Processing toolbox, which is not free. Nevertheless, EEGLAB remains a potentially useful
tool for of�ine artifact rejection. Other available tools, such as Biosig, Pyeeg, BrainStorm, and edfbrowser, have similar
shortcomings. One promising open source tool, OpenViBE, supports the Epoc Emotiv, reads and processes data in real-
time, and supports Python and Matlab scripting and exporting. However, its integration was not pursued and is a suggested
possible avenue for future work.

Figure 3. Automatic blink detection in EEGLAB

3. Initial Analysis

Initial work focused on learning how to work the Emotiv Epoc and analyzing various methods for processing. Aditya
Kalluri, an intern on the project in Summer 2012, implemented EEG data reading capability, PEBL integration, and
preliminary frequency analysis.7 Figure 4 is a plot of the Pope Index over time with preliminary data. The �gure illustrates
the Epoc’s high sensitivity to noise, especially movement noise. Outside of a two minute block in the center, the data is
unusable due to movement and other noise.

Furthermore, a trade study was conducted concerning the use of wavelet transforms instead of the Fast Fourier Trans-
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form. The Fourier transform is susceptible to a limitation imposed by a concept similar to the Heisenberg Uncertainty
principle: time resolution directly trades off with frequency resolution. The shorter the block size for the transform, the
better the time resolution but the poorer the frequency resolution, especially in the low frequencies. The longer the time
blocks, the more accurate the fourier transform but the worse the time resolution. For signals with nonconstant transforms,
such as EEG signals, this shortcoming could be important. Wavelets avoid the problem by using a �lter bank that enables
good temporal resolution for low frequency components and good frequency resolution for high frequency components.
However, the fast fourier transform was still used due to the following reasons:

1. A wavelet transform does not decompose the signal into sinusoids of various frequencies. Most of the literature
in EEG attention processing uses the frequency domain to analyze data, and taking advantage of existing literature
was deemed a high priority.

2. Using wavelet transforms would increase both implementation complexity and runtime.

3. Sources indicated that EEG is not susceptible to the problem described above.8 A Fourier transform is still applica-
ble for signals in which the high frequency components vary faster than the low frequency components.

Nevertheless, wavelets transforms can be used as a feature source for classi�cation in future work.
The initial analysis was primarily used to learn how to process the data and to make decisions for component imple-

mentations for the real- time classi�cation system. From this analysis, an implementation plan was developed for each
component of the real-time feature analysis and classi�cation of EEG data.

Figure 4. Initial frequency analysis

4. Artifact Detection and Removal

Before analysing EEG data, it must be aggressively cleaned of various artifacts and noise such as eye blinks, head
movement, and jaw clenches. One of the greatest challenges in EEG processing is the detection and removal of eye blinks.
Though blinks can be used as a feature in state detection, they are noise in respect to detecting brain activity. Eyeblinks
are unpreventable (without serious implications in subject comfort), occur regularly and often, occupy a frequency range
(0-4 Hz) that also contains other useful data, and drown out other components in amplitude. In clinical applications, blinks
are typically removed manually, a time consuming process. For real-time applications, manual artifact removal is not an
option.

After using EEGLAB for artifact detection and removal was rejected, an extensible artifact detection and removal
system was developed and applied to blinks. Figure 5 is an overview of the eyeblink detection and removal process.
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For each EEG channel, as the data is read, it is split into two second epochs. Each epoch is then correlated with a known
eyeblink shape. To prevent boundary conditions and to detect eyeblinks across epochs, the previous epoch is included
in each correlation calculation. From this correlation, peaks are chosen as the most likely locations for a blink. From
these peaks, a static threshold is used to eliminate false peaks and blinks. The remaining peaks in each channel are
combined, and one second windows centered at the peaks are created. These windows can cross up to two epochs, as
in the correlation. Finally, each window is �ltered (high pass �lter from 4 - 60 Hz) to remove the low frequency blink
component.

Figure 5. Eyeblink Detection and Removal Flowchart.

An identical system can be used for any known artifact shape - one simply has to replace the known eyeblink data with
stereotypical data for the target artifact. A frequency based system for detection of artifacts such as jaw clenches, which
have a distinctive high frequency component, has also been identi�ed. An FFT is taken at each two second window, and
the power at given frequency bins is calculated. These power values are fed into a Support Vector Machine which can be
used to identify jaw clenches based on the distinctive frequency signature.

There are also alternatives to the �ltering artifact removal scheme. These include rejecting the entire window around
each blink (ignoring it in feature extraction and classi�cation) and using independent component analysis to remove the
blink source so that other source activities are not affected.

5. Feature Analysis and Extraction

Table 1 describes several EEG features used for data analysis.

Table 1. EEG Features

Feature Description

Pope Index A ratio of the power at various frequency bands. Two versions of this index are used:
�

� + �
and

�
�

. The
ratios are calculated for a single channel. Time blocks of between two and ten seconds are used when this
feature is used alone for classi�cation.

Blink Rate A function of the blink rate in each time block (ten seconds when used alone for classi�cation). More
speci�cally, the peaks in the correlation of the known blink and the data, as described in Section 4., are
added. The sum is then normalized. This feature incorporates the four front channels of EEG data: F3,
AF3, F4, and AF4.

Variance Variance of a given channel of EEG data.
Kurtosis Kurtosis of a given channel of EEG data. Kurtosis is the fourth standardized moment of data and is a

measure of the peakedness of the data.

Of these features, the Pope Index and Blink Rate were most often used. Only the blink rate uses event responses,
while the other features are long term responses to general activity. These features are used for the machine classi�cation
described in Section E.

C. HRV

1. Background

Heart Rate Variability, while a useful tool for describing ANS activity, lacks a standard method of data collection and
calculation. The raw data being monitored are the RR intervals, the time between R peaks of the pulses detected by any
standard ECG. There are many proposed ways of �nding the �variability� in these intervals, some of which are more or
less susceptible to differences in measurement time duration. Since all of the experiments listed above have test blocks of
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short, varied length (less than or equal to 5 minutes, 2 - 4 blocks), many typical methods of calculating HRV are rendered
invalid. Standard deviation of intervals, for example, is a widely accepted method for calculating HRV, but depends highly
on the duration of time over which the sample is taken, usually 24 hours, and should not be used to compare samples of
different lengths. Other time-domain methods that could be used are the root mean square of successive differences in
intervals (RMSSD) or the number of successive interval differences greater than 50 ms (NN50).9

Another approach is to look at the frequency-domain components of HRV. Power in the low frequency (LF) band of
0.04-0.15 Hz, high frequency (HF) band of 0.15-0.4 Hz, and the ratio between the two are often used. This is useful not
only because it can be applied to test durations of varying lengths over short amounts of time, but it also indicates the
type of activity going on in the brain.9 High frequency is an indicator of parasympathetic nervous system activity (PSNS)
while low frequency is less clear but is thought to be linked to both PSNS as well as sympathetic nervous system (SNS)
activity. The PSNS is the part of the ANS responsible for �rest and digest� unconscious activity; this activity is depressed
during concentration while SNS, responsible for the ��ght or �ight� response, is stimulated during high-stress or highly
engaged situations. HRV, especially in the high frequencies, tends to decrease during periods of focus and so the LF/HF
ratio is a good measure for classifying rest and concentration.10

2. Artifact Removal

Heart rate and HRV are affected by physical activity, but since subjects in the tests above and in anticipated experiments
are kept sedentary, this was not taken into account.10 The Zephyr Bioharness, however, is susceptible to movements as
the chest strap can shift and beats can be missed or falsely detected. Besides excluding sections of especially noisy data
during which the subject was adjusting the chest strap or resituating him/herself, little was done to remove artifacts from
the data. The Bioharness software has its own proprietary algorithms for artifact removal and processing of the ECG. It
excludes artifacts such as ectopic or incorrectly detected beats before the RR interval data is exported. However, since
most software associated with heart rate monitors like the Zephyr Bioharness is proprietary, a lower-cost way of extracting
and processing data in real-time would be to develop a separate code for the purposes of this project to process the raw
ECG data and remove artifacts. Since the Bioharness cannot output RR data in real- time, the scope of this aspect of the
project was limited. Free software packages, e.g. gHRV, for HRV analysis do exist but require data in a certain format
and were not pursued. For future applications, investigation into such software as well as compatible sensors is warranted
as a time and money saving measure.

3. Feature Analysis and Extraction

Initial data analysis focused primarily around frequency-domain measures of HRV, as described above, because this
was determined to be most applicable to the data retrieved from the experiments. A set of data was taken by the Zephyr
Bioharness during the Facilitated Rest and Engagement test and divided into approximately 4-minute long sections (the
�rst and last 30 seconds for each section was excluded to eliminate adjustment time for HRV). Each block was then
classi�ed as either �rest� or �concentrated.� The power spectral density was taken for each section to show the distribution
differences between subject states. The power for the very low frequency (VLF, 0-0.04 Hz), LF, and HF bands was
calculated, as was the ratio of LF/HF power. The power was normalized by summing the power in each frequency band
and dividing by the sum of the power over the entire frequency range.

In addition, it was desirable to obtain features that could be applied over shorter time blocks (10-30 seconds) for
machine learning classi�cation. Since high and low frequency components of HRV need approximately 1-2 minutes,
respectively, to accurately potray power distribution, other features were investigated. Table 2 describes the power ratio
and machine learning features.

Table 2. HRV Features.

Feature Description
Power Ratios The ratio of power in the HF band to power in the LF band.

Mean Intervals The average RR interval length.
Mean Power The average power within a designated frequency band. For machine learning, the

high frequency band is used.
Variance The variance of RR intervals, a function of standard deviation.

Amplitude The absolute value of the difference between the maximum and minimum RR interval
lengths (a function of standard deviation).

Standard Deviation The standard deviation of RR intervals.
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D. GSR

1. Background

Galvanic Skin Response as a physiological measure has a rich and diverse heritage dating back to the early 1900’s. It
has been extensively used in polygraph tests, anxiety experiments, and more recently with sleep and seizure studies.11 In
general, no standard method of analysis has been developed for GSR, inherently due to its broad applicability. Although
many terms are used to describe GSR, most research describes the analysis in terms of skin conductance level (SCL) and
skin conductance response (SCR). SCL is a tonic measurement that refers to the value of skin conductance in the absence
of any external stimuli; this can also be referred to as a baseline. SCR, on the other hand, is a phasic measurement that
refers to the change in skin conductance following an external stimuli; these responses are often called peaks and are short
term, occurring one to six seconds after the stimuli.12 Common features that have been considered for the analysis of
SCRs are rise time, recovery time, latency, slope, and amplitude. Recent studies have shown that the latency of response
and the number of GSR peaks following a stimulus can be to indicate the state of arousal or attention of a subject.13 SCRs
are a more useful indicator for attentive states of a subject than SCL measurements, because they are a direct response to
stimuli and because every subject will have a different baseline SCL measurement.

A systematic method for GSR analysis has been proposed that employs the use of principal component analysis
(PCA).12 In this publication, PCA is performed on the correlation matrix formed between the GSR test results from healthy
subjects and subjects that were clinically diagnosed to be psychotic. Using various combinations of the eigenvalues of the
correlation matrix, clusters were formed that were successful in separating the data between two different subject types.
As the crew state monitoring system seeks to classify between various levels of attention, this research was particularly
useful towards the development of a method for state separation.

2. Artifact Removal

The data from the NeuLog GSR sensor have artifacts that must be considered. Physical activity and hand movement
were seen to produce changes in GSR that could be interpreted as SCRs. Some GSR sensors include an actigraphy
measurement to account for this motion. For all subject tests performed for this report, however, motion of the hand was
not necessary with the NeuLog sensor attached, and actigraphy readings could be regarded as negligible; for example, the
�ight simulator was controlled with the right hand while the left hand, to which the electrodes were attached, remained
stationary. It was also observed that some subjects had a constantly increasing SCL throughout the duration of a test.
For example, Fig. 6 illustrates this trend displayed by a subject during the �ight simulation task. This trend could be
correlated with an increase of palm temperature created by the contact of the skin with the joystick controller, similar to
how many people develop sweaty palms while playing video games or holding hands. Small peaks can be seen in Fig. 6
which suggest SCRs exist but are not as visible due to the large change in overall SCL that occurs over the duration of the
test.

Figure 6. Increasing GSR measurements during GEFS task.

A possible solution to remove this linear trend would be to develop a temperature probe that could measure palm or
�nger temperature. If, for example, there was a similar increasing linear trend in temperature, that trend could be removed
from the data and the relevant SCRs could be analyzed. Note that actigraphy is also evident in the �rst �fty seconds or
so of this trial, most likely due to the subject becoming situated during setup. For an aircraft pilot, motion of the operator
is unavoidable and cabin temperatures can �uctuate during �ight; therefore factors such as temperature and actigraphy
should be considered for a fully operational implementation of GSR in a professional crew state monitoring system. For
GSR results in this report, no artifact rejection other than the minimization of subject movement during testing has been
implemented. Rather than artifact removal, the GSR analysis relies on the normalization of data.
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3. Initial Analysis

Preliminary analysis consisted of graphing the raw data and its slope at each point in time. Results for a �ight
simulator test can be seen in Fig. 7 , which also gives a histogram of the derivative. The histogram is centered around
zero and is provided to give a general idea of whether the data is increasing or decreasing. For example, a histogram
of the derivative for the results in Fig. 6 would be centered around a positive value. Figure 7 shows results similar to
those obtained from the majority of test subjects. Skin conductance stayed constant or had a negative slope during the
inattentive sections and had a positive slope during the attentive sections. Two subjects, however, had decreasing GSR
measurements during takeoff and maneuvering phases. These subjects had the common factor of either being experienced
video gamers or having �own actual aircraft. This was an important lesson in data analysis because it illustrated that
habituation to stressful situations such as takeoff or maneuvers that evoked strong responses form most subjects has the
potential to change the results from what may be expected; this also gave more weight to analysis methods that use features
independent of the subject. Therefore, level of experience and habituation of a subject is an important factor that must be
considered in developing an experiment.

Figure 7. GSR Results for four phase GEFS scenario.

It was important to collect GSR data from multiple subjects performing different functional tasks to begin to charac-
terize GSR shapes and trends. Subject tests were performed using the PEBL change detection task. An analysis technique
was investigated using a similar PCA technique as described in the GSR background section. The results from this analy-
sis can be seen in Fig. 8 , where the �rst subplot gives the raw GSR data and markers indicating the start of a new PEBL
change in the task. The second subplot gives the normalized eight seconds of GSR data directly following the start of a
new change detection task and the third subplot gives the average of those normalized responses at each point in time.

Figure 8. Sample PEBL Principal Component Analysis Results. The entire task lasted just over two minutes.
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Because the responses were similar in shape and phase, the averaged value of the responses reached a normalized
value of almost 0.25. For responses that are not as similar, the mean value will be closer to zero. Forming a correlation
matrix for each of those events gives an idea of how similar the responses were. Each PEBL test had twelve events, leading
to a 12 x 12 matrix being formed. The eigenvalues of the correlation matrix provide a way of visualizing the similarity of
each response; the cumulative sum of the eigenvalues is given in the fourth subplot of Fig. 8 .12 The sum of the �rst two
eigenvalues for this subject is greater than 0.8, indicating strong correlation between the responses over the course of an
entire PEBL test. Figure 9 gives two different clusters of eigenvalues for fourteen different subjects. The �rst cluster plotsP 10

i =4 against� 1 + � 2 and the second cluster plots� 4 against� 3.

Figure 9. Correlation Matrix eigenvalue clusters for 14 different subjects from PEBL change detection task.

Although both plots appear to have roughly two clusters, further analysis yielded no correlation to attentive states.
The PEBL reports generated from the program itself give metrics such as response time and accuracy but these did not
correspond with the clusters seen in Fig. 9 . Since the change detection task uses four different changes of varying
dif�culty throughout a full test, metrics such as response time are not extremely valuable when considering the attentive
state of a subject � change type is too strong of a lurking variable to overcome.

It was also observed that some subjects, while attentive, had a harder time locating changes, usually due to the sub-
tleness of the change. Upon inspection of each set of raw data, it was evident that the correlation matrix between full
responses is not extremely useful, since SCRs can have varying latency values and durations. For example, a simple
increase in latency would make two similar SCRs appear different according to the correlation matrix. It was concluded
that a full PEBL change detection task is not suf�cient to evoke different attentive states from a subject. SCRs exist in
the GSR data, but the overall shape of the data does not have any distinct feature changes. This led to the decision to
implement a test consisting of �ve minutes of rest directly preceding and following a PEBL task, as described earlier in
the Methods section.

The raw output of GSR for this task can be seen in Fig. 10 . The results for GSR from this test illustrated that GSR
behaves very differently for a subject in a resting state versus a subject mentally engaged in a PEBL task. Although there
were some outlying data sets that did not exactly follow this trend, in general most subjects exhibited GSR measurements
similar to those seen in Fig. 10 , where the SCL is generally smooth and decreasing during the inattentive rest phase and
increasing and full of SCRs during the attentive PEBL task phase. The second subplot in Fig. 10 gives a normalized
average for GSR during the resting phase. These two distinct GSR shapes and trends were used to de�ne features for the
two classes, attentive and inattentive.

Figure 10. GSR measurement for a PEBL task preceded and followed by a resting period

4. Feature Extraction

In order to implement a crew cognitive state classi�cation system using GSR, different existing methods were explored,
leading to the development of a new technique involving feature extraction and machine learning. Table 3 summarizes
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the four main features under consideration for GSR. These features were chosen based on the culmination of research on
existing methods and features that best described the shape and trend of GSR data. Because SCL varies subject to subject,
it was important to consider features that were independent of amplitude or the SCL. In addition to the features listed in
Table 3 , features such as mean and standard deviation were calculated.

Table 3. GSR Features.

Feature Description
Variance Variance of the GSR data.

Max Difference The largest difference between adjacent GSR data points.
Amplitude The absolute value of the difference between the maximum and minimum of the GSR data.

Integral The area under the curve formed by the GSR data, obtained by a Simpson’s numerical integration scheme.

E. Machine Learning Classi�cation

A generic machine learning code was developed to analyze features from each of the sensors. The resulting modularity
allows quick testing and use of different combinations of features across modalities. The primary method used is a Support
Vector Classi�er from the SkLearn Python library14. Support Vector Classi�ers (SVC) rely on the features having different
values depending on the group to which they belong. Training data is �rst used to �t the classi�er and �nd separations in
the data. Figure 11 demonstrates such a classi�er with various kernel types. The kernel refers to the type of function used
to separate the data intro groups. LinearSVC and SVC with Linear Kernel are two mechanisms that use linear functions to
separate groups. The RBF kernel is used for circular groups, such as when one group is completely surrounded by another.
Finally, the Polynomial kernel uses a 3rd degree polynomial to separate groups. Though the examples shown only have 2
features (plotted on the X and Y axis, respectively), a SVC can support any number of features. The dots’ colors represent
the group to which the training data belongs. Future data is plotted similarly and classi�ed using the separations. The
background colors indicate the groups to which future data will be classi�ed.

Figure 11. SVC Example with 4 different kernel types.

The Facilitated Rest and Engagement Experiment described in Section II.B.3. can be used to test and analyze the
effectiveness of the classi�er. Rest and engaged data from multiple subjects is used, and the data is marked according to
the set from which it originates. After features are extracted from the modalities, a cross correlation mechanism is used.
60% of the data is randomly selected to act as training data. After the classi�er is �t, the remaining 40% of the data is
predicted, and the predicted states can be compared to their true states. After the classi�cation stage, multiple metrics are
used to evaluate the classi�ers. In addition to total classi�er accuracy, precision and recall for both rest and concentration
were determined. Precision means, out of the things identi�ed as X, how many were truly X, and can be calculated as
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follows:

Precision =
T ruePositive

T ruePositive + FalsePositive
(1)

Recall is de�ned as the number of things identi�ed as X that were truly X, and can be calculated as follows:

Recall =
T ruePositive

T ruePositive + FalseNegative
(2)

IV. Results and Analysis

A. EEG

1. Artifact Detection

The eye blink detection system shows promising results. It was tested as follows: with 3 subjects, two male and one
female, tests were run in which a test examiner marked each subject blink with a keyboard press. These presses were
saved alongside the EEG data. Qualitative analyses indicate that the system detects about 80% of blinks. A two- sample
means T-test over several tests indicate that the difference between the eyeblink correlation in the one second windows
around true eyeblinks and outside such windows is signi�cant atp < : 001.

Figure 12 is a sample output of the blink detection and rejection code. It includes the raw eeg values, true subject
blinks, blink correlation and peaks, and the cleaned EEG.

Figure 12. Blink Detection and Rejection Graphs

Furthermore, the windows around each blink were analysed for a more quantitative evaluation of blink detection. The
keyboard presses and correlation peaks were used to determine, at each time step, whether the data should have been
�ltered and whether the data was �ltered. Table 4 shows the results from this analysis and its sensitivity to the threshold
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value used for peaks. These results indicate a high detection rate (of the data points that should have been detected, the
percentage that was detected) but also a higher than desired false detection rate (of the data that should have been ignored,
the percentage that was detected) for low threshold values. Figure 13 illustrates the True Detection and False Detection
rates over increasing threshold. As the threshold increases, both the detection rate and the false detection rate fall.

Table 4. Blink Detection Results

Trial Threshold Data Points True Detect False Detect True Miss False Miss Detection
Rate

False
Detection
Rate

1 .1e10 13325 1161 8249 3708 207 84.87% 68.99 %
1 .2e10 13325 873 6486 5471 495 63.82% 54.24 %
1 .3e10 13325 707 5486 6471 661 51.68% 45.88 %
2 .1e10 15965 1532 5981 7928 524 74.51% 43.00 %
2 .2e10 15965 897 3671 10238 1159 43.63% 26.39 %
2 .3e10 15965 462 2837 11072 1594 22.47% 20.40 %
3 .1e10 16217 1385 7216 7381 235 85.49% 49.43 %
3 .2e10 16217 1125 5606 8991 495 69.44% 38.41 %
3 .3e10 16217 1006 4600 9997 614 62.10% 31.51 %

Total .1e10 45507 4078 21446 19017 966 80.85% 53.00 %
Total .2e10 45507 2895 15763 24700 2149 57.39% 38.96 %
Total .3e10 45507 2175 12923 27540 2869 43.12% 31.94 %

Figure 13. Detection Rates at varying thresholds

To improve this detection scheme, the threshold used to determine true artifacts from the peaks must become more
sophisticated. Due to differences between subjects and experiments, as well as limitations in manual threshold deter-
minations, a static threshold is not optimal. Regardless, the analysis indicates that the correlation technique effective in
detecting features. Future work should expand this system to other artifacts.

2. Features and Classi�cation

Features were used for classi�cation both alone and in pairs. For each run, total accuracy as well as other measures
were used. Eight trials of Facilitated Rest and Concentration from �ve subjects, two male and three female, was used for
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these tests. As described in Section III.E., a random 60% of the data was used as training data, and the remaining 40% was
used as samples to predict. The four kernel types mentioned above were used for classi�cation. Table 5 contains classi�-
cation results using only EEG features. It is important to note that the data was skewed with 40.9% of the data collected
during the PEBL task and 59.1% of the data collected during rest. Thus, a classi�er attains a success rate of 59.1% even
if it classi�es everything as rest due to no separation in the data. To test whether the classi�er’s performance over such a
non-classi�er is statistically signi�cant, a hypothesis test is performed over the binomial distribution as follows:

P(Y � yjn ; p) =
1X

k= y

�
n
k

�
kp(n � k)1� p (3)

where
n = Number of time blocks in test data
p = Accuracy of a non-classi�er, max(% rest data, % concentrated data)
y = classi�er accuracyscore*n

The resulting value is the probability that, if the classi�er is no better than a classi�er as effective as the non-classi�er
described above, it would yield the resulting accuracy score. The p value is thus:

p value = 1 � P(Y � yjn ; p) (4)

Table 5. EEG Classi�cation Results

Feature 1 Feature 2 Best Classi�er Acc. p value Rest Precision Rest Recall Conc.
Prec.

Conc.
Recall

Pope Eyeblink RBF .684 .0096 .67 .93 .77 .32
Pope None Linear SVC .643 .091 .70 .68 .56 .59
Pope Variance Linear SVC .643 .091 .70 .68 .56 .59
Pope Kurtosis Linear SVC .643 .091 .69 .73 .57 .52

Eyeblink Kurtosis Polynomial .604 .368 .62 .87 .54 .22
Eyeblink None Polynomial .604 .368 .62 .87 .54 .22
Variance Kurtosis Polynomial .597 .432 .59 1.00 1.00 0.02
Eyeblink Variance All Same .591 .497 .59 1.00 0.00 0.00
Variance None All Same .591 .497 .59 1.00 0.00 0.00
Kurtosis None All Same .591 .497 .59 1.00 0.00 0.00

When using the low performing features, all the test data was classi�ed as resting because no separation could be
determined from the training data.

These results suggest the potential of using EEG features in a classi�cation system. The Pope Index performs the
best, regardless of the second feature. A more sophisticated power analysis along with a more sensitive sensor would
yield a powerful classi�er. Furthermore, these results emphasize the bene�ts of using multiple features. Though the
eyeblink feature alone did not perform signi�cantly better than the baseline, combining it with the Pope index improves
performance over only using the Pope index. The classi�er is better than random withp < : 01.

3. Artifact Removal

Artifact removal was tested alongside features and classi�cation. Features were calculated using EEG from which
blinks have been removed. Table 6 contains classi�cation results using EEG features calculated from clean EEG data.

Table 6. Clean EEG Classi�cation Results

Feature 1 Feature 2 Best Classi�er Acc. p value Rest Precision Rest Recall Conc.
Prec.

Conc.
Recall

Kurtosis None Polynomial .604 .368 .62 .85 .53 .25
Pope Eyeblink RBF .597 .432 .61 .87 .52 .21
Pope None All Same .591 .497 .59 1.00 0.00 0.00

Variance None All Same .591 .497 .59 1.00 0.00 0.00
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Features calculated after removing eyeblinks performed substantially worse than features calculated before artifact
rejection. The high false detection rate and imperfect �ltering remove too much information from the data. Future work
should include �nding alternatives to remove artifacts without affecting the rest of the data. These alternatives include
Independent Component Analysis and individual channel �ltering. Furthermore, open source tools such as OpenViBE
may be used for feature rejection.

4. Discussion & Future Work

A complete EEG classi�cation system, from data collection to feature calculations to classi�cation, has been devel-
oped. Due to the modular nature of the code, different implementations of each component can easily be swapped into
the overall system. Future work should use the developed system and simply improve various components as necessary.
The results suggest that frequency power analysis has a strong potential in state monitoring systems. A classi�er using
the Pope Index as a feature performed signi�cantly better than a random classi�er withp < : 01. For future work, the
Pope Index feature can be improved by factoring in the Index at multiple channels. For the classi�cations above, only
the AF3 electrode was used to calculate the Pope index. A calculation using more electrodes may prove more robust. In
addition, numerous other potential features, such as wavelet analysis, ICA, and more advanced measures, can be pursued,
and the machine learning classi�cation system can also be potentially improved. Though SVMs are commonly used for
such applications, other approaches such as neural networks and hidden Markov models may increase performance and
should be studied.15

The artifact detection results display the power of a simple and �exible system to detect known responses through a
correlation method, and the results support the use of the Emotiv Epoc to detect event responses such as blinks. However,
from both the results and a qualitative assessment, the Emotiv Epoc is most likely neither sensitive nor noise resistant
enough for long term attention research. To make further advances in feature calculations, a better sensor with more
electrodes should be used.
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B. HRV

1. Features and Classi�cation

Initial data for four subjects, two male and two female, was taken for the Facilitated Rest and Engagement Test and
the power spectral density was found and plotted. No strong patterns between subjects were apparent by visual inspection.
However, distinctions between resting and concentration can be seen on the individual subject level.

Figure 14. Power Spectral Density. From top to bottom: Subject 1, Subject 2, Subject 3, Subject 4. Blue lines represent resting data, green lines
represent concentrated data, and dashed vertical lines show divisions between power bands.

Table 7. HRV Power Ratios.

Subject Number LF/HF Resting LF/HF Concentrated
1 2.13 2.12
2 2.39 3.80
3 3.44 1.66
4 2.93 1.67

Table 8 above shows the features used for machine learning classi�cation as presented in EEG Features and Classi�-
cation. Equation 4 was used to calculate the binomial distribution statistics in the table, where 60% of the data was used
to train the classi�er and 40% was used to predict state. The true percentage of resting data was 54%. Below in Fig. 15
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Table 8. HRV Classi�cation Results

Feature 1 Feature 2 Best Classi�er Acc. p-value Rest Prec. Rest Recall Conc.
Prec.

Conc.
Recall

Standard Dev. Amplitude RBF 0.707 0.013 0.61 1.00 1.00 0.45
Variance Amplitude RBF 0.707 0.013 0.61 1.00 1.00 0.45

Mean Intervals Variance Polynomial 0.683 0.029 1.00 0.32 0.63 1.00
Mean Power Variance Linear SVC 0.683 0.029 0.62 0.79 0.76 0.59
Amplitude None RBF/Poly. 0.659 0.059 0.59 0.89 0.83 0.45
Variance None RBF 0.659 0.059 0.58 1.00 1.00 0.36

Mean Intervals Mean Power RBF 0.659 0.059 0.59 0.89 0.83 0.45
Mean Intervals Amplitude RBF 0.659 0.059 0.59 0.89 0.83 0.45
Mean Power None RBF 0.634 0.11 0.57 0.89 0.82 0.41
Mean Power Amplitude RBF 0.634 0.11 0.56 0.95 0.89 0.36
Mean Power Stand. Dev. RBF 0.634 0.11 0.57 0.89 0.82 0.41

Standard Dev. None Polynomial 0.585 0.18 1.00 0.11 0.56 1.00
Mean Intervals Stand. Dev. Polynomial 0.537 0.39 0.50 0.32 0.55 0.73
Mean Intervals None Linear/RBF 0.463 0.84 0.46 1.00 0.00 0.00

can be seen the machine learning classi�ers for the four signi�cant feature combinations (p< 0.05).

Figure 15. HRV Machine Learning Classi�ers. Counterclockwise from top left: (Mean Intervals, Variance), (Mean Power, Variance), (Variance,
Amplitude), (Standard Deviation, Amplitude). Red dots represent resting data and blue dots represent concentrated data; yellow background
indicates resting classi�cation and blue background indicates concentrated classi�cation.

2. Commentary and Conclusion

The difference between resting and concentrating power spectral density data indicated that although there may not
be a common in-task HRV response among subjects, there was a noticeable difference between attentive and inattentive
states for each. Since using this method to classify attention requires much more data and more subjects than for machine
learning classi�cation, it was not pursued further. Without statistical analysis it could not be concluded whether the
differences in the power ratios were signi�cant. There was not enough data to determine whether there was a trend among
power ratios, but further investigation into this may be warranted, as well as an investigation into common factors among
subjects that may contribute to LF/HF increasing or decreasing with mental load, such as physical �tness.10

Variance or standard deviation, in combination with other features, contributed to all of the signi�cant classi�ers (p<
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0.05). Since all the blocks of data are the same time duration, it is appropriate to use standard deviation and its derivative
variance as a measure of comparison. Amplitude also appeared to be a helpful feature, nearly signi�cant (p = 0.059) by
itself, and improving performance of the predictor when paired with other features. The mean interval length performed
the worst of the features (p = 0.84), making it worse than a random classi�er, but mean power (taken in the HF band), while
not signi�cant by itself, did predict with a p-value of 0.11. Given that the blocks of data were 30 seconds in length,shorter
than the recommended sampling time of 1 minute to detect power in the HF band, this accuracy may improve with larger
time blocks. However, more data collection would be necessary to ensure an appropriate number of blocks are available
for analysis.

In conclusion, more effort was put into the machine learning classi�cation than power spectral density since it bears
the potential to be easily integrated with GSR and EEG in joint classi�cation, as will be discussed in the next section. In
order to best be compatible with the time block samples for GSR and EEG classi�cation, features that do not require long
blocks to be meaningful (e.g. mean power) should be used; variance, standard deviation, and amplitude are a few such
features. If longer times and more data are available, frequency analysis is appropriate and carries potential as a classi�er.
Though more research into the best classi�cation system needs to be conducted, signi�cant headway into identifying
relevant features has been made and the foundation for including HRV features relatively easily in a joint classi�cation
system has been laid.

C. GSR

1. Features and Classi�cation

After much preliminary analysis was done, the general behavior and shape of GSR for two different cognitive states
were obtained. The features described in Table 3 were calculated for various subjects in attentive and inattentive states
throughout the course of an entire test. The results of the machine learning method developed for this project can be seen
in Table 9 . It is evident that the integral of the data is the feature that leads to the best separation of the data. All three
machine learning classi�cations that employed the integral had a p value of 4.8x10� 6, calculated with Eq. 4 , indicating
that the classi�er de�ned by the training data was much more signi�cant than a random classi�er. Note that the other three
features have p values of 0.43, indicating that they are poor features to use in a machine learning classi�er. Indeed, when
they are combined with the integral there is no improvement to the classi�er and the integral is clearly the best performing
feature in terms of separation.

Table 9. GSR Classi�cation Results

Feature 1 Feature 2 Classi�er Acc. p-value Rest Prec. Rest Recall Conc.
Prec.

Conc.
Recall

Integral None Linear 0.80 4.8x10� 6 0.97 0.68 0.68 0.97
Integral Variance Linear 0.80 4.8x10� 6 0.97 0.68 0.68 0.97
Integral Max Change. Linear 0.80 4.8x10� 6 0.97 0.68 0.68 0.97

Max Change None Linear 0.59 0.43 0.59 1.00 0.00 0.00
Variance. None Linear 0.59 0.43 0.59 0.92 0.42 0.08

Amplitude. None Linear 0.59 0.43 0.59 1.00 0.00 0.00

Running the machine learning code for the integral features resulted in a strong separation centered about zero; features
from the attentive state had positive areas and features from the inattentive state had negative areas. A few data points do
not follow this trend, however the majority of the test results behave according to this separation. The integral is a much
stronger feature than the others given in Table 9 : the integral of the normalized response curve describes the trend of the
data and whether the section of data being analyzed has an increasing or decreasing trend. Additionally, the other features
are more prone to noise and are not as accurate over smaller sections of time such as those being considered to extract
features.

2. Commentary and Conclusion

As a sensor, the NeuLog GSR is suf�cient for the purposes of a crew state monitoring system. It interfaces well
with Python and data can easily be extracted through the serial port, essential for a real-time implementation of state
classi�cation. Its 16 bit resolution is suf�cient to capture changes in GSR that may arise from changes in a subject’s
cognitive state, although artifacts such as actigraphy and skin temperature may need to be considered for a more advanced
system.

After much research on existing analysis techniques and technologies, a new GSR analysis method was developed

19 of 23

NASA Glenn Research Center, August 2013



for use in state classi�cation using machine learning. This method focused on the shape and trend of GSR data and
successfully de�ned the integral of a data set as a feature that performed well for machine learning classi�cation between
attentive and inattentive states.

D. Multi-Modal Classi�cation

In addition to independent feature calculations and classi�cation, EEG and GSR were combined in a joint classi�cation
system. The data was synchronized through the integrated testbed. For each ten second block, both GSR and EEG data was
retrieved and sent to their respective feature analysis functions. The returned features were then sent to the classi�cation
code. Table 10 contains the joint classi�cation results.

Table 10. Multi-modal Classi�cation Results

EEG Feature GSR Feature Best Classi�er Acc. p value Rest
Prec.

Rest
Recall

Conc.
Prec.

Conc.
Recall

Pope Area Linear SVC .805 5.86x10� 9 .96 .70 .69 .95
Eyeblink Area Linear Kernel .799 1.71x10� 8 .97 .68 .68 .97

Pope Variance Linear SVC .643 0.091 .70 .68 .56 .59
Pope Max Change Linear SVC .643 0.091 .70 .69 .56 .57

The �rst two entries in Table 10 illustrate that the joint EEG- GSR binomial state classi�cation system is a signi�cant
improvement over a random classi�cation system. A combination of Pope index for EEG and area for GSR gives a p
value well under the 0.01 signi�cance threshold. Although the �nal two entries in Table 10 are above the 0.05 signi�cance
threshold, the combination of GSR and EEG features improves the classi�cation accuracy and signi�cance over the
classi�cation using the modalities individually. Figure 16 , Fig. 17 , and Fig. 18 demonstrate how using joint classi�cation
and multiple features in general improves the prediction rate. The Pope Index by itself has signi�cant, but limited,
effectiveness. When used with the GSR area under the curve, it helps separate values that the GSR alone could not handle,
such as those in the top right of Fig. 18 .

Figure 16. Classi�cation using only the Pope Index. Red circles
represent concentrated data and blue circles represent rest data.

Figure 17. Classi�cation using only the GSR area under the
curve. Red circles represent concentrated data and blue circles
represent rest data.
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Figure 18. Classi�cation using both the Pope Index and the GSR area under the curve. Red circles represent concentrated data and blue circles
represent rest data.

The same classi�cation system was used such that data from the same subject was used both to train the classi�er and
test the classi�er. The accuracy score for the results from one subject increased to 87%, indicating a classi�er trained for a
single subject has the potential to be more accurate. The accuracy score for a second subject, however, decreased to 73%.
These results illustrate that training the classi�er for one subject can increase classi�cation performance but that one must
be careful to collect enough training data from the subject. Individualizing training data drastically reduces the amount of
data used to train the classi�er and so could reduce classi�er performance. A commercial airline implementation of the
crew state monitoring system could be used on the same pilot for multiple �ights, justifying time spent to individualize
training data.

E. Multi-Modal, Real-Time Classi�cation

Finally, as a proof of concept for real-classi�cation, an overall system has been developed. This system trains a
classi�er using previously collected data, collects new EEG and GSR data in blocks of ten seconds, calculates the features,
and outputs a prediction for the subject state. The predictions are determined based on a voting function that uses the four
different types of kernels. If a majority of the classi�ers predict the same state, that state is chosen as the prediction.
However, if the classi�ers are split evenly, the Linear SVC’s predicted state is chosen due to its high performance.

To test the real-time classi�er, two subjects, one male and one female, switched between states of rest and concentra-
tion as instructed by a test examiner. Figure 19 shows a screenshot of the real time classi�cation results alongside a PEBL
test used to evoke concentration. Initial qualitative evaluations indicate that the system effectively predicts the subject’s
state. For example, when one subject was completing the PEBL task, all but two blocks over a two minute span (twelve
blocks) were predicted as concentration data. However, no quantitative evaluations were made to test the effectiveness of
the voting mechanism and the system as a whole.

Figure 19. Screenshot of real-time classi�er in action
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This system indicates that a real-time crew state monitoring system using GSR and EEG is possible. Future work
should improve the voting mechanism (potentially weighing the classi�ers and the features based on their individual
performance), implement the ability to view signal quality (and classi�cation con�dence) alongside the prediction, and
integrate this system with the real-time visualization system.

V. Project Conclusion

This report presents the work toward the development of a crew state monitoring system capable of monitoring mul-
tiple cognitive states using biofeedback from multiple modalities. A testbed was developed that integrated various func-
tional tasks with electroencephalography, heart rate variability, and galvanic skin response sensors. Extensive research
was done on existing analysis methods in order to identify meaningful features for each modality during different cog-
nitive and physiological states. These features were extracted from subject data obtained during a functional task that
evoked both attentive and inattentive states. Feature extraction from each of the modalities enabled the training and use of
a machine learning binomial classi�er. Classi�ers using EEG Pope Index, GSR Area under the curve, and HRV amplitude
and variance, respectively, performed signi�cantly better than a random classi�er, indicating that these modalities would
contribute value to a crew state monitoring system. Furthermore, multi-modal classi�cation was implemented for the
GSR and EEG sensors. Of the different feature combinations, GSR area and EEG Pope index had the best accuracy score
of up to 80% for multiple subjects, better than the features alone performed. This result indicates that the multi-modal
characteristic of such a system yields higher performance. Finally, a real-time classi�cation system was implemented and
tested on two subjects as they were instructed to alternate between resting and concentrating. The classi�cations coincided
very well with the actual state of the subject, demonstrating a proof of concept of a real-time, multi-modal, multi-state
crew state monitoring system.
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