
DESIGNING MARKETPLACES AND CIVIC ENGAGEMENT PLATFORMS:

LEARNING, INCENTIVES, AND PRICING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nikhil Garg

June 2020

 http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: http://purl.stanford.edu/mf806mq4601

© 2020 by Nikhil Garg. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://purl.stanford.edu/mf806mq4601

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Ashish Goel, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Ramesh Johari

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dorsa Sadigh

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

Many of our most crucial societal interactions are now mediated by algorithmic systems. We buy

goods, find work and hire each other, discuss current events, and make public decisions through

online platforms. Non-profit and government actors further use such systems to assign kids to

schools, organs to patients, and food to food banks. Principled socio-technical system design requires

formalizing an objective and understanding the incentives, behavioral tendencies, and capabilities

of participants; in turn, the design influences participant behavior. In practice, design decisions

are made jointly through the interplay of experimental and data-driven techniques on one hand,

and theoretical modeling and insights on the other. In this dissertation, I describe work designing

socio-technical systems in two domains, two-sided marketplaces and civic engagement platforms.

I demonstrate how to leverage theory-motivated design and robust empirical analyses together to

build better systems, filling in gaps at the interfaces of these approaches.

Part I considers the design of surge pricing that is incentive compatible for drivers in ride-hailing

platforms. The work compares two potential driver payment policies for such platforms: a new driver

surge mechanism (now deployed across the US), in which the surged component of a trip payment is

additive (independent of trip length) as opposed to multiplicative (proportional to trip length), the

historical standard. The paper presents the theoretical foundation that informed this change at Uber.

We model surge evolution as a continuous-time Markov chain; we show that, with multiplicative

pricing schemes, strategically rejecting certain trip requests may maximize an individual driver’s

earnings, to the detriment of others. We then develop an incentive compatible pricing scheme

with an approximately affine, closed-form expression. Finally, we analyze counter-factual earnings

from more than 500,000 ride-hailing trips, validating that our proposal would increase incentive

compatibility and earnings stability in practice.

Part II tackles rating system inflation on online platforms, studying how to choose the multiple

choice question asked of raters. Each potential question induces a joint distribution between the

seller’s underlying quality and the ratings they receive, and we develop a large deviations based

framework to quantify how quickly the true ranking of sellers is recovered, given this joint distribu-

tion. With an experiment on a large online labor market, we show that various rating questions yield

dramatically different rating distributions: while 80.6% of freelancers receive the best rating using

v

a traditional numeric scale, less than 35.8% receive top ratings using other designs. Our theoretical

framework quantifies the resulting information gain and provides a principled way to choose among

the scales given the behavioral data. We further show how informational priorities (identifying the

absolute best items versus separating unacceptable from acceptable items) should affect design.

Part III considers the design and building of systems for participatory budgeting. A key challenge

in such systems is to design the elicitation mechanism: participants must be able to share their

opinions in a manner that is simple, expressive enough for decisions that lie in high-dimensional

spaces, and yet enables provably efficient aggregation. First, I present a new method for people to

collectively make a decision on a societal budget. In our method, voters are sequentially asked for

their ideal budget within a constraint set determined by the previous voter’s answer. This process

simulates stochastic gradient descent, and the asymptotic output provably maximizes societal welfare

in certain settings. We test our method by building a intuitive user interface and running elections

on Amazon Mechanical Turk. Second, we show how to optimize an existing elicitation mechanism

– K Approval, in which each voter identifies their favorite K candidates – in a principled manner.

With real voter data from over thirty elections, we demonstrate that many multi-candidate elections

that select W winners are run sub-optimally: whereas voters are typically asked to identify their

K = W favorite candidates (e.g., K = 1 in a winner-takes-all election), it is learning rate optimal

to ask voters to identify their favorite M > K candidates.

vi

Acknowledgments

To my advisors, Ashish Goel and Ramesh Johari. You’ve been the best advisors I could have

imagined, as kind and patient as you are excellent scholars and teachers. You’ve taught me to

be unafraid to tackle the problems I believe are important, and have let me shape the PhD that

I wanted, even when that meant disappearing for months at a time working on some completely

disparate project. I hope to be an advisor in your mold. Ashish, you’ve modeled taking risks,

whether by becoming a pilot or by pivoting research fields and trying to fix democracy. Ramesh,

you’ve modeled picking problems from across fields, serving the academic community, and taking

care in all your teaching.

To my other research mentors. Hamid Nazerzadeh has been an intern mentor, co-author, job

market advocate, and friend these last two years. Vijay Kamble took me under his wing when I was

a first-year student, and has been a great friend and mentor since then, always ready to give advice

and offer help when I need it.

To the other professors in the Stanford Society and Algorithms (SOAL) group in MS&E, my

adopted community at Stanford. Itai Ashlagi wandered over to our desk area with something

interesting to say, on a daily basis. Sharad Goel shared discerning takes on how to do useful research

and manages a computing cluster that I (ab)used for each of my works. Irene Lo and Johan Ugander

provided crucial advice at several stages of my PhD and were extremely generous with their time

and feedback. Outside of MS&E, Michael Bernstein, Dan Jurafsky, Gabriel Weintraub, and James

Zou provided guidance on research and beyond, and Dan and James were wonderful collaborators.

My committee members Balaji Prabhakar, Daniela Saban, and Dorsa Sadigh also have been patient,

and have provided a fun and useful dissertation process.

To my group-mates, lab-mates, SOAL student community, and fellow group meeting atten-

dees and TAs: Nick Arnosti, Tum Chaturapruek, William Cai, Yiling Chen, Je-ok Choi, Lin

Fan, Lodewijk Gelauff, Margalit Glasgow, Arpit Goel, Reyna Hulett, Vijay Kamble, Allison Koe-

necke, Anilesh Krishnaswamy, Sanath Kumar, Hannah Li, Wanyi Li, Bar Light, Peter Lofgren,

Rahul Makhijani, Nikki Nikolenko, Allison Park, Benjamin Plaut, Stephen Ragain, Geoff Ramseyer,

Mohammad Rasouli, Carlos Riquelme, Sukolsak Sakshuwong, Sven Schmit, Virag Shah, Camelia

Simoiu, Meltem Tutar, David Walsh, Carrie Wu, Linjia Wu, and Hongyang Zhang, and others I’m

vii

sorry to have messed up in omitting here. I learned more from my peers than any other group, and

y’all made it fun, even when you (Hannah, Sven) made fun of innocent me for no good reason.

To the rest of my Stanford friends, including Leighton Barnes, Daniel Hatchell, Andrew Naber,

Nitish Padmanaban, Arjun Seshadri, Raghav Subramaniam, Sahaana Suri, Paroma Varma, Steve

Yadlowsky, and friends throughout Electrical Engineering, the university, and AddisCoder. Our

potlucks, board game nights, and endless chats made it more than bearable. These last few months

in particular, when we’ve all been stuck inside in Covid-19 quarantine but connected virtually, have

especially underscored the value of great friendships.

To my friends from grade-school through undergrad, too many to list here. I’ve realized recently

how lucky I am to have a group of friends together from our time in elementary school, a group

that has only grown over time in both size and love. Y’all have been wonderful, and our trips and

long-distance video calls have meant more to me than I can express.

To all my co-authors: William Cai, Dorottya Demszky, Johann Gaebler, Lodewijk Gelauff,

Matthew Gentzkow, Ashish Goel, Sharad Goel, Ramesh Johari, Dan Jurafsky, Vijay Kamble,

David Marn, Kamesh Munagala, Hamid Nazerzadeh, Benjamin Plaut, Sukolsak Sakshuwong, Londa

Schiebinger, Jesse Shapiro, Rob Voigt, James Zou. Research is best when it is collaborative.

To administrators and staff, and those at my steady rotation of coffee-shops: Roz Morf, Lori

Cottle, Adam Bailey, Jenny Lam, David. Thank you for your support and for making the Stanford

community what it is.

The specific works in this dissertation also benefited from work by and many conversations with

Alice Lu, Carter Mundell, Cary Luu, Hayden Brown, Jake Edison, John Horton, Kane Sweeney,

Leighton Barnes, Margaret Tian, Michael Bernstein, Michael Sheldon, Oliver Hinder, Peter Cohen,

Qitang Wang, and Shane Kinder.

Academic research is a privilege afforded to us by a public that trusts that we are using their

resources wisely, for a greater good. In that spirit, I’d like to thank the National Science Foundation,

Office of Naval Research, Army Research Office, and Stanford Cyber Initiative for supporting me

and my work.

Finally, to my family: Mom, Dad, and Nikhita, and all my family in India and the U.S.: you’ve

always been there, providing invaluable love and support.

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Dissertation outline . 4

1.2 Bibliographic notes . 7

I Pricing in Online Marketplaces 9

2 Driver Surge Pricing 10

2.1 Introduction . 10

2.1.1 Contributions . 11

2.1.2 Related Work . 12

2.2 Model, driver earnings, and platform objective . 14

2.2.1 Model primitives . 14

2.2.2 Driver strategies and earnings . 15

2.2.3 Platform objective and constraints . 18

2.2.4 Practical considerations . 19

2.3 Incentive compatibility with affine pricing . 19

2.3.1 Single-state model: multiplicative pricing is incentive compatible 20

2.3.2 Dynamic model: multiplicative pricing is not incentive compatible 21

2.3.3 Why is multiplicative surge pricing not incentive compatible? 22

2.4 Incentive Compatible Surge Pricing . 23

2.4.1 Transition probabilities and expected time spent in each state 23

2.4.2 Incentive Compatible pricing in the dynamic model 24

2.4.3 Opportunity cost intuition for incentive compatible pricing 25

2.4.4 Proof sketch of Theorem 2.4.1 . 27

2.5 Numerics: Incentive Compatibility with Additive Surge 27

ix

2.5.1 Computing optimal driver policies . 28

2.5.2 Results . 28

2.6 Empirical Comparison of Surge Mechanisms . 30

2.6.1 Data setting and analysis description . 31

2.6.2 Analysis and results: value of short and long trips 33

2.7 Conclusion . 34

II Designing Rating Systems in Online Marketplaces 36

3 Designing Informative Rating Systems 37

3.1 Introduction . 37

3.2 Related literature . 40

3.2.1 Platform measures to counter or encourage inflation 40

3.2.2 Survey design and rating inflation in other contexts 41

3.2.3 Theoretical analyses of ratings . 42

3.3 Online labor market experiment description . 42

3.3.1 Motivation and hypothesis . 43

3.3.2 Empirical context . 43

3.3.3 Method . 44

3.4 Labor market test results . 46

3.4.1 Verbal rating scales counter inflation . 47

3.4.2 Verbal rating scales yield more informative ratings 49

3.4.3 Discussion . 52

3.5 A framework to compare rating scales . 52

3.5.1 Model . 53

3.5.2 Quantifying design performance via convergence rate 56

3.5.3 Application to the online labor market . 57

3.6 Conclusion and discussion . 59

3.6.1 Challenges, opportunities, and limitations . 59

3.6.2 Future work . 61

4 Designing Optimal Binary Rating Systems 63

4.1 Introduction . 63

4.2 Related work . 65

4.3 Model and optimization . 66

4.3.1 Model and problem specification . 66

4.3.2 Large deviations & discretization . 68

4.3.3 Solving the optimization problem . 69

x

4.3.4 Visualization and discussion . 71

4.4 Designing approximately optimal, implementable rating systems 72

4.5 Mechanical Turk experiment . 73

III Designing Voting Mechanisms on Civic Engagement Platforms 76

5 Iterative Local Voting 77

5.1 Introduction . 77

5.1.1 Contributions . 79

5.2 Related Work . 81

5.2.1 Stochastic Subgradient Method . 81

5.2.2 Iterative Local Voting . 81

5.2.3 Optimization without Gradients . 82

5.2.4 Participatory Budgeting . 83

5.2.5 Implicit Utilitarian Voting . 83

5.3 Convergence Analysis . 84

5.3.1 Spatial Utilities . 84

5.3.2 Decomposable Utilities . 86

5.3.3 Equivalence to Directional Equilibrium . 87

5.4 Experiments with Budgets . 88

5.4.1 Experimental Setup . 89

5.4.2 Experimental Parameters . 89

5.4.3 User Experience . 90

5.5 Results and Analysis . 91

5.5.1 Convergence . 91

5.5.2 Understanding Voter Behavior . 96

5.6 Conclusion . 100

6 Optimizing Elections with Many Candidates 103

6.1 Introduction . 103

6.2 Related work . 104

6.3 Model . 106

6.3.1 Model primitives . 106

6.3.2 Asymptotic design invariance . 107

6.4 Learning Rates and Optimal Design . 109

6.4.1 Learning rates . 109

6.4.2 Optimal design and discussion . 111

6.5 Theoretical Design Insights . 112

xi

6.5.1 When does randomization help? . 112

6.5.2 K-Approval for selecting W winners . 114

6.6 Empirics and PB deployments . 115

6.6.1 Data description . 117

6.6.2 Model validation . 117

6.6.3 K-Approval for selecting W winners . 118

6.6.4 Randomization in practice . 119

6.7 Discussion . 119

A Driver Surge Pricing 121

A.1 Additional discussion and information . 121

A.1.1 Platform objective . 121

A.1.2 Driver earnings in each state . 123

A.1.3 Model’s relationship to practice . 124

A.1.4 Supplementary Figures . 125

A.2 Extra empirical information . 126

A.2.1 Additional results and facts . 127

A.2.2 Empirical analysis additional information . 132

A.3 Proofs of single state model results . 136

A.3.1 Driver reward . 136

A.3.2 Proof of Theorem 2.3.1 . 136

A.3.3 Proof of Proposition 2.3.1 . 139

A.3.4 Uniqueness of optimal policy for single-state model 140

A.4 Proofs of dynamic model results . 141

A.4.1 Driver reward . 142

A.4.2 Proof strategy for incentive compatible pricing and structural results 145

A.4.3 Necessary lemmas . 146

A.4.4 Proofs of main results, Theorems 2.3.2 and 2.4.1 149

A.4.5 Optimal policies as depend on derivatives . 154

A.4.6 Proofs of appendix-only lemmas . 162

B Designing Informative Rating Systems 169

B.1 Further analysis of the labor market test . 169

B.1.1 Verifying randomization in allocation of clients 169

B.1.2 Robustness against high volume clients and allocation bug 170

B.1.3 Regressing treatment response with treatment cell and other covariates . . . 171

B.1.4 More on inflation over time . 172

B.1.5 Analysis of cell with randomized order of answer choices 173

xii

B.1.6 Design approach using labor market data . 173

B.2 Amazon Mechanical Turk synthetic experiment . 174

B.2.1 Experiment description . 175

B.2.2 Results . 177

B.3 Proofs . 179

C Designing Optimal Binary Rating Systems 182

C.1 Mechanical Turk experiment, simulations, and results 182

C.1.1 Experiment description . 182

C.1.2 Calculating optimal β and H . 184

C.1.3 Simulation description . 185

C.2 Supplementary theoretical information and results 189

C.2.1 Formal specification of system state update 189

C.2.2 Detailed algorithm . 189

C.2.3 Formalization of effect of matching rates shifting 191

C.2.4 Limit of β as M →∞ . 191

C.2.5 Learning ψ(θ, y) through experiments . 192

C.3 Proofs . 193

C.3.1 Rate functions for Pk(θ1, θ2) . 194

C.3.2 Laplace’s principle with sequence of rate functions 195

C.3.3 Rate function for Wk . 196

C.3.4 Proofs of Lemma 4.3.1 and Theorem 4.3.1 . 198

C.3.5 Additional necessary lemmas . 201

C.3.6 Proof for Theorem 4.3.2 . 206

C.3.7 Proof of Theorem C.2.1 . 208

C.3.8 Kendall’s tau and Spearman’s rho related proofs 209

D Iterative Local Voting 212

D.1 Mechanical Turk Experiment Additional Information 212

D.2 Indifference Regions Additional Information . 213

D.3 Proofs . 217

D.3.1 Known SSGM Results . 217

D.3.2 Mapping ILV to SSGM . 218

D.3.3 Proof of Theorem 5.3.1 . 218

D.3.4 Proof of Theorem 5.3.2 . 220

D.3.5 Proof of Propositions . 220

D.3.6 Proof of Theorem 5.3.3 . 221

D.3.7 Proofs of Lemmas . 222

xiii

E Optimizing Elections with Many Candidates 228

E.1 Empirics additional information . 228

E.2 Proofs . 234

E.2.1 Asymptotic design-invariance . 234

E.2.2 Learning rates . 235

E.2.3 Design insights . 239

Bibliography 251

List of Tables

3.1 Treatments groups for labor market test . 45

3.2 Number of clients and jobs in each cell, and mean treatment response 46

5.1 Summary of convergence results . 84

B.1 Average treatment responses under different data policies 170

B.2 OLS Regression Results with covariate for previous number of treatment responses . 172

B.3 Optimal scores φ for each treatment, where the score of the top position is normalized

to 5. 175

B.4 Large deviation learning rates for each treatment in the Mturk experiment, calculated

using Equation (3.4) and the joint distributions generated using the training data

plotted in Figure B.6. Optimal for each treatment corresponds to the highest learning

rate among many random score functions tested. 178

E.1 List of election data that we use in Section 6.6. From PrefLib, we use all elections

where full rankings are available and there are at least 5 candidates and 700 voters.

Throughout, we ignore voters who did not submit full rankings (especially with high

K-Ranking requested, this might only be a fraction of the total number of actual

votes). Additionally, for the PB elections, we limit the data to those who submitted

votes online rather than through paper ballots. Sources for the PrefLib datasets

are: Mattei and Walsh (2013); O’Neill (2013); Popov et al. (2014); Regenwetter et al.

(2007, 2008). 230

xiv

E.2 OLS Regression on the best K to use in K-Approval, by the number of candidates

and desired winners. Standard errors are cluster standard errors, where each cluster

is an election in our dataset. 232

E.3 Elections and goals where randomizing between two K-Approval mechanisms pro-

duces leads to faster learning than using either of the mechanisms separately. For

several of these cases, randomization also beats the Approval rate optimal mechanism. 233

E.4 Where the constants such that 0 < ε < a < T2

2 < T2 < T1 < T1 + 2T2 + a = 1,

i.e., the table describes a valid probability distribution.Row 10 is as follows: The first

K candidates (the asymptotic winners) occupy the first K spots, in an order drawn

uniformly at random. Similarly, The bottom M −K candidates occupy the bottom

M −K spots, in an order drawn uniformly at random. This randomization ensures

asymptotically design invariance. 247

List of Figures

2.1 Driver surge heatmaps with multiplicative and additive surge. On Uber, drivers see

a heatmap of surge when they are logged in but not on a trip, guiding them to higher

earning opportunities by signaling each location’s value (Lu et al., 2018). Structural

simplicity is essential to clearly communicate payments to drivers, and additive and

multiplicative surge represent the two simplest options. 11

2.2 The primitives are as follows: λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4; in both states, trip

lengths are distributed according to a Weibull distribution with shape 2 and mean
1
3 . These parameters reflect realistic average trip to wait time values, and that surge

tends to be short-lived compared to non-surge times. 25

2.3 How C, the ratio R1/R2 at which IC pricing is feasible from Theorem 2.4.1, changes

(1) with respect to the mean trip length, and (2) with respect to λi→j . Except for

those that are varied in each plot, the primitives are fixed to those used in Figure 2.2:

λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4 and, in both states, trip lengths are distributed

according to a Weibull distribution with shape 2 and mean 1
3 26

xv

2.4 Incentive compatibility for each type of surge. The shaded regions are where the

respective scheme is incentive compatible in the surge state (σ2 = (0,∞) is optimal).

When not varied, λ1 = λ2 = 10, λ1→2 = 1, λ2→1 = 4, R2 = 3.33, R1 = 1, and trip

lengths in both states are distributed according to a Weibull distribution with shape

2 and mean 0.3. We assume every trip is accepted in the non-surge state. 29

2.5 Difference in earnings over the next 90 minutes for the driver of a given accepted trip

request, and a matched driver who also was open nearby at the time of the request,

conditional on surge factor (rounded to nearest 0.5) and length of trip. Error bars

are 95% bootstrapped confidence intervals. 34

3.1 Labor market test marginal rating distributions. Error bars are 95% boot-strapped

confidence intervals, where the bootstrapped sampling is done at the client level. . . 47

3.2 Likelihood that a client will rehire a freelancer during the time period of the test, given

just the first rating the client gives that freelancer during the test period. Values are

normalized by the overall mean rehire rate. Confidence intervals are 95% intervals

with bootstrapped sampling done at the client level. 50

3.3 Joint distributions of freelancer quality vs. ratings in the Average and Numeric treat-

ment cells, respectively. Low, Medium, and High quality sellers refer to those with

other cell average ratings in [0, 2), [2.5, 3.5) and [4.5, 5], respectively. The Y axis is

the probability that a freelancer of a given quality receives a rating at least as high as

the X axis. Confidence intervals are 95% intervals with bootstrapped sampling done

at the client level. 51

3.4 We apply and test our design approach using experimental data from our online

labor market. Large deviation rates are calculated using Equation (3.4) and the joint

distributions generated in Section 3.4.2. Optimal for each treatment corresponds to

the highest learning rate among many random scores. 57

4.1 Optimal β (with M = 200) with various objective weight functions w and matching

rates g. 68

4.2 Experiment and simulation results . 74

5.1 UI Screenshot for 1 set of the L2 Mechanism . 90

5.2 Solution over time for each mechanism type . 92

5.2 (Continued) Solution over time for each mechanism type 93

5.3 Net normalized movement in window of N = 30 . 94

5.3 (Continued) Net normalized movement in window of N = 30. 95

5.4 Average movement in dimension over total movement for each voter, with dimensions

sorted . 97

xvi

5.5 Fraction of possible movement in each dimension in L∞, conditioned on distance to

ideal pt. The ‘All’ condition contains data from all three L∞ instances, whereas the

others only from the instance that also did full elicitation. 98

5.6 Median time per page . 99

5.7 Histogram of values from all full elicitation data. The red vertical lines indicate each

slider’s default value (at the 2016 estimated budget). 101

5.8 Histogram of weights from all full elicitation data. The red vertical lines indicate the

sliders’ default value of 5. 101

6.1 K-Approval rate optimal mechanism for the Mallows model as φ, number of candi-

dates, and number of winners vary. 112

6.2 Validating model: comparing learning rates to empirical error, and showing approxi-

mate design invariance. 116

A.1 Fraction of time spent in surge state, µ2(σ), with driver policy σ = {σ1 = (0,∞), σ2},
where σ2 = (t,∞), i.e., t is the minimum trip length accepted in the surge state. The

primitives are as follows: λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4; in both states, trip

lengths are distributed according to a Weibull distribution with shape 2 and mean
1
3 . These parameters reflect realistic average trip to wait time values, and that surge

tends to be short-lived compared to non-surge times. Note that the driver can increase

the time spent in the surge state by rejecting short surge trips. 126

A.2 Using the same model primitives as in Figure A.1: the payment function wi(τ) for

various surge mechanisms plotted two ways, when R2 = 1 and R1 = 2
3 for drivers who

accept every trip. 126

A.3 Surge facts from RideAustin marketplace . 128

A.4 Basic trip facts from RideAustin marketplace . 129

A.5 Same as Figure 2.5, except with the surge factor flipped to simulate a world with

frequent, valuable surge. 130

A.6 Histogram of per-shift driver earnings per hour. Note that the y-axis is in log scale. 131

A.8 Constructed payment function (Additive surge with base fare) vs the reverse engi-

neered Status quo fare payments at the trip level. As expected, additive surge tends

to pay higher for shorter trips and lower for longer trips. 133

A.9 Using next nearby driver with an accepted trip as the counter-factual match. 134

A.10 Using period length of next 1 hour (instead of 1.5 hours). 134

A.11 Starting measurement from dispatch time instead of trip start time, i.e., taking into

account the first part of the trip that is unpaid for the driver. 135

A.12 With pure multiplicative and additive surge, respectively (no min fare). 135

xvii

B.1 Rating distributions for different client sampling techniques. As in the main text, the

confidence intervals are 95% bootstrapped confidence intervals, with bootstrapped

sampling at the client level. 171

B.2 Mean ratings for each treatment cell by the number of previous treatment responses

given during the test period. Error bands are bootstrapped 95% confidence intervals. 173

B.3 Joint distributions of freelancer quality vs. ratings in the other treatment cells. Low,

Medium, and High quality sellers refer to those with other cell average ratings in

[0, 2), [2.5, 3.5) and [4.5, 5], respectively. 174

B.4 Joint distributions, where Low, Medium, and High quality sellers refer to those with

other cell average ratings in [0, 2), [2, 4) and [4, 5], respectively. 175

B.5 Simulated performance over time with various other configurations. The “Worst”

scoring rule corresponds to the rule φ with the smallest learning rate found for each

treatment. 176

B.6 Joint distributions of rating and expert score on the MTurk training set, by treatment

condition. 177

B.7 Simulated performance of each rating scale with Equally Spaced scores. 178

C.1 Additional information for MTurk experiment . 183

C.2 Paragraph rating distribution – for paragraph θ and rating word y, the empirical

ψ̂(θ, y) is shown. Colors encode the true quality as rated by experts (light blue is best

quality, dark blue is worst). 184

C.3 Optimal H(y) varying by w(θ1, θ2) using Mechanical Turk data 185

C.4 Simulations from data from Mechanical Turk experiment – Binary rating system . . 188

D.1 Page 1 – Welcome Page for all mechanisms . 213

D.2 L2 Page 2 – Instructions . 213

D.3 L2 Page 3 – Mechanism . 214

D.4 Page 4 – Feedback for all mechanisms . 214

D.5 Full Elicitation Page 3 – Mechanism . 215

D.6 Fraction of possible movement in each dimension in L∞, conditioned on distance to

ideal pt. The ‘All’ condition contains data from all three L∞ instances, whereas

the others only from the instance that also did full elicitation. This plot only in-

cludes those people who provided an explanation as long or longer than the median

explanation provided (197 characters). 215

xviii

D.7 Fraction of possible movement in each dimension in L∞, conditioned on distance to

ideal pt. The ‘All’ condition contains data from all three L∞ instances, whereas the

others only from the instance that also did full elicitation. This plot only includes

those people who provided an explanation shorter than the median explanation pro-

vided (197 characters). 216

E.1 Average bootstrapped error (fraction of winning subset not identified) by the number

of voters, compared to the errors implied by the (empirically calculated) learning

rates. All mechanisms plotted have the same asymptotic winners. 229

E.2 More approximate design invariance plots . 231

E.3 K-Approval rate optimal mechanism for the Mallows model as φ, number of candi-

dates, and number of winners vary. This plot contains an empirical line, which is

calculated using the coefficients in the regression contained in Table E.2. 232

xix

xx

Chapter 1

Introduction

Many of our most crucial societal interactions are now mediated by algorithmic systems. We buy

goods, find work and hire each other, discuss current events, and make public decisions through

online platforms. Non-profit and government actors further use such systems to assign kids to

schools (Abdulkadiroğlu et al., 2005), organs to patients (Roth et al., 2004), and food to food

banks (Prendergast, 2016). The promise of these socio-technical systems is that they enable coor-

dination at scale. Each participant can act locally according to their own incentives, information,

and constraints – and make global connections and impact. When designed correctly, the system

helps people to together achieve some shared goal, and ensures that the benefits are divided fairly;

meanwhile, bad designs waste resources and privilege some participants to the detriment of others.

Building these systems is challenging. The designer must decide who can participate, what

participants can do, and how they communicate to each other and the platform – while respecting

business, legal, and human constraints. Each decision affects the participant incentives, information,

and constraints, and hence their behavior and ultimately system outcomes. The system’s specific

context determines good design. For example, commodity markets such as ride-hailing centrally set

prices, while ones with more heterogeneous products like lodging allow hosts to set their own; these

decisions reflect the relative amount of information available to participants and the platform.

Many disciplines now consider the design of such systems, using a range of methods. On the day

to day level, practitioners at large companies run thousands of experiments (A/B tests) a day, to

evaluate everything from user interfaces and site design to algorithms for matching, recommendation,

and pricing (Luca and Bazerman, 2020; Salganik, 2019). Whether a particular change is deployed

depends on how it performs on a suite of metrics. Experimental and data-driven methods are best

when theory and intuition is not precise enough to choose among similar designs. For example,

Google tested 40 shades of blue for web links (Arthur, 2012).

However, data-driven methods are insufficient to design modern socio-technical systems. It is

often too expensive or simply infeasible to experimentally consider too many options, and running

1

2 CHAPTER 1. INTRODUCTION

principled experiments in networked settings is difficult. Some changes may be too sensitive or risky

to deploy, even in a limited environment. Such difficulties are especially compounded for changes

that are public-facing or have effects that may not be apparent on the time scale of an experiment.

For example, in ride-hailing markets, large changes to how drivers are paid should be paired with

public communication, naturally limiting how often such changes can be made.

Theoretical mechanism and market design models shed insight in such cases; under assumptions

on participant utility functions, they seek to predict behavior under large design changes. Such

approaches are especially successful at constructing system designs that provably are optimal under

some objective (such as welfare), with attractive properties (such as strategy-proofness). In this

manner, different policies can be compared by connecting individual actions under the model to

a global objective. Academic papers shed high-level insight on practical problems, and researchers

apply their training to design mechanisms outside academia, across domains (Athey and Luca, 2019).

However, as the aphorism, “all models are wrong but some are useful” (Box, 1979) suggests,

design optimality guarantees are useful to the extent that the underlying model approximates real-

ity. Unfortunately, real-world behavior often differs substantially from that assumed by theoretical

models, and mechanisms in practice often face subtle business, legal, and human constraints that

are difficult to model. Such factors make it difficult to predict a mechanism’s practical impact a

priori, before it is deployed or evaluated in a particular context.

These competing aspects of data-driven and theoretical approaches lead to a division of labor to

design and build socio-technical systems across domains; the latter provides high-level guidance and

ideas, and the former evaluates them and optimizes them in context. However, there are gaps at

the interface of these approaches – where platforms must make fine-grained design choices that are

infeasible to wholly evaluate experimentally, but for which coarse theoretical insights are insufficient:

� Optimal mechanisms may not be implementable in practice, for context-specific reasons. How

do we test assumptions and analyze good-enough approximations for a given application?

� User interface and other design decisions typically made experimentally may have important

implications for downstream decisions and platform objectives. How do we connect short-lived

experimental measures to these long-run effects?

Motivated by such gaps, in this thesis I demonstrate several ways forward to connect the prac-

tically feasible to the theoretically optimal, in service of building useful systems and solving central

socio-technical design challenges. One recurring lesson is that this approach requires focusing on a

particular application and developing requisite domain knowledge; through collaborations with prac-

titioners, my work has informed systems at Uber, a large online labor platform, and in participatory

budgeting elections across the United States.

(Approach 1) Empirically designing implementable mechanisms that approximate

ideal ones. Mechanism design solutions are often theoretically elegant but may violate real-world

3

constraints. For example, they may be too complicated to be understood by regular people, and so

participants may not trust the system or act strategically (sub-optimally) even when the mechanism

is provably “strategy-proof” (Hassidim et al., 2016). A platform designer must then implement

a mechanism that obeys its constraints and best approximates the first-best solution, even when

analyzing such mechanisms is theoretically intractable. One way forward is to first construct an

optimal solution, and then empirically and numerically compare different approximations of it.

For example, ride-hailing platforms centrally set prices so as to reduce delays and matching

frictions. Prior academic work considers how to set prices such that drivers drive when and where

is most efficient, yielding important, influential insights (Besbes et al., 2018a; Bimpikis et al., 2016;

Ma et al., 2018). In practice, however, driver payments must be transparent and communicated

ahead of time – such as through a heat-map of current surge prices.

In Chapter 2, we start with a theoretical market design approach and design a general, incentive

compatible payment scheme for drivers in the presence of dynamic demand. We then compare two

simple, transparent pricing schemes used in practice, revealing under which market characteristics

each scheme approximates the ideal one. Leveraging real ride-hailing data, we make a specific rec-

ommendation for such markets. The work grew out of my summer at Uber; I was a data science

intern on the team building a new driver surge mechanism (now deployed across the US), in which

the surged component of a trip payment is additive (independent of trip length) as opposed to multi-

plicative (proportional to trip length), the historical standard. The chapter presents the theoretical

foundation that informed this change.

(Approach 2) Deriving principled outcome measurements for experiments. Some

design challenges, especially concerning platform user interfaces, both (a) are so contingent on

idiosyncratic human behavior that an experiment is the only path forward and (b) affect long-run

platform objectives in ways that may not be transparent in a short experiment. In such cases, one

approach is to construct an intermediate outcome that is both measurable in a short experiment

and is theoretically sound in connecting with a long-run platform objective.

This approach is especially important for information elicitation systems, which are used to

gather opinions from users; opinions are then aggregated and used to train down-stream models

and make decisions. On online marketplaces and labor markets, for example, feedback ratings are

used by the platform to recommend products and by future participants to vet purchases. On civic

engagement platforms, votes (for candidates or issues) are used to make public decisions. In such

systems, the specific question asked of respondents (for example, “How did this freelancer compare

to others you’ve hired” versus, “Please rate the seller from 1 to 5 stars”) substantially affects the

distribution of responses (as we demonstrate in this thesis), which can be measured in an experiment.

However, absent an understanding of how the platform will use the collected data in downstream

tasks, it is unclear which distribution of responses is “best.” A question that is effective at weeding

out unacceptable products may not be useful in identifying top performers.

4 CHAPTER 1. INTRODUCTION

To address this challenge in various contexts, Chapters 3, 4, and 6 each start with theoretical

models of downstream platform decisions and how they’re differentially affected by the distribution

of responses from the user interface. This approach yields a statistic mapping such distributions

to a long-run platform learning objective. Then, we use both experiments and historical data to

compare specific user interface designs with respect to this statistic. Using this approach, these

chapters identify effective opinion elicitation questions for a large online labor platform and for

participatory budgeting elections.

(Approach 3) Building systems to evaluate usability and test assumptions. Finally,

in some cases, a proposed mechanism simply needs to be tested, either in the lab or in a real-world

setting. While the mechanism may “seem” simple and have desirable theoretical properties, the best

proof of its practical usability is a working demonstration. Such end-to-end design and analysis of a

new mechanism – deriving it with theory, building a usable system that implements it, and testing

it through controlled experiments – is the promise of a truly interdisciplinary approach.

In this spirit, in Chapter 5 we propose a new voting method to vote in multi-dimensional con-

tinuous spaces – like budgets. We theoretically show that different variants of the mechanism work

(find a societal optimal budget) under varying assumptions on analytic forms of the voters’ utility

functions. We then implement the system and evaluate it experimentally on Amazon Mechanical

Turk, showing that the required interface is indeed usable and that several of the mechanism variants

– especially the ones that theoretically are the most flexible – work, i.e., consistently converge to

the same outcome across tests.

This thesis presents approaches to overcome gaps at the interface between technical disciplines to

design socio-technical systems. To close this part of the introduction, it is essential to acknowledge

the importance of engaging with the social sciences and humanities in this venture; such an inter-

disciplinary direction is among the most promising future directions in the design of socio-technical

systems, and ignoring those disciplines worsens outcomes, cf. Abebe et al. (2020); Hitzig (2018);

Immorlica (2019). I have benefited from such collaborations, though the resulting work is not in-

cluded in this thesis (Demszky et al., 2019; Fishkin et al., 2019; Garg et al., 2018b). I hope that this

dissertation nevertheless demonstrates that such gaps between disciplines can be bridged without

sacrificing the strengths of either, and that the approaches above serve as a guide to future work, in

order to design better, more principled socio-technical systems.

1.1 Dissertation outline

This dissertation is organized as follows. Appendices containing proofs and other supporting material

are all included at the end.

1.1. DISSERTATION OUTLINE 5

Part I, “Pricing in Online Marketplaces” This part is composed of a single chapter (Chap-

ter 2), “Driver Surge Pricing,” which presents a surge pricing scheme for drivers in ride-hailing

platforms. The work grew out of my summer at Uber; I was a data science intern on the team build-

ing a new driver surge mechanism (now deployed across the US), in which the surged component of

a trip payment is additive (independent of trip length) as opposed to multiplicative (proportional to

trip length), the historical standard.

The chapter presents the theoretical foundation that informed this change. Due to the temporal

dynamics of surge – in which certain time periods are more valuable than other periods, to balance the

supply to available drivers with the demand for rides – trips of different lengths have different driver

opportunity costs. We model surge evolution as a continuous-time Markov chain; in our model,

we show that, with traditional, multiplicative pricing schemes, strategically rejecting certain trip

requests may maximize an individual driver’s earnings, to the detriment of riders and other drivers.

For example, it may be advantageous to reject short trips during surge in the hopes of getting a

longer surge trip. We then develop an incentive compatible pricing scheme with an approximately

affine, closed-form expression. Such simplicity is important in practice to enable transparency and

communication of surge prices to drivers through a heat-map, and stands in contrast to previous

works which resolve such strategic concerns through prices that emerge from a global optimization

framework. Finally, through both calibrated simulations and by analyzing counter-factual earnings

from more than 500,000 ride-hailing trips, we validate that our proposal would increase incentive

compatibility and driver earnings stability in practice.

Part II, “Designing Rating Systems in Online Marketplaces” In this part, we tackle the

challenge of rating inflation in online platforms, where most sellers predominantly receive positive

ratings (on AirBnB, e.g., almost 95% of hosts have an average rating of at least 4.5 out of 5 stars

(Zervas et al., 2015)). Such inflation leads to uninformative rating systems in which noise dominates.

In Chapter 3, we study how the platform can choose the multiple choice question that it asks

raters. Each potential question induces a joint distribution between the seller’s true underlying

quality and the ratings they receive. For example, asking “How did this freelancer compare to others

you’ve hired” versus, “Please rate the seller from 1 to 5 stars,” may yield different rating responses,

for the same quality seller. We develop a large deviations based framework that quantifies how

quickly the platform recovers the true ranking of sellers, given this joint distribution. This framework

thus provides the ideal metric for an A/B test, connecting a design to a platform’s long-term goals,

without needing to run a long experiment to measure the outcome directly.

We then run an experiment on a large online labor market and show that platforms can get

informative ratings, by leveraging positive-skewed, verbal label scales (e.g., one scale ranges from

Below Average to Best Freelancer I’ve Hired). In the experiment, clients rate freelancers through

various verbal and numeric scales. These scales induce substantially different rating behaviors: while

80.6% of freelancers receive the best numeric rating, less than 35.8% receive top verbal ratings;

6 CHAPTER 1. INTRODUCTION

furthermore, clients are up to 31.8% more likely to rehire the freelancer after giving them a top

rating on a verbal scale than after giving them the top numeric score. Our theoretical framework

then quantifies the resulting information gain and provides a principled way to choose among the

scales given the behavioral data. These results serve as a positive contrast to a long line of work

proposing various changes that do not prevent inflation.

In Chapter 4, we show how a platform’s informational priorities should affect the rating system

design. In commodity markets such as ride-hailing, it is essential to separate unacceptable from

acceptable participants as quickly as possible. In superstar markets, on the other hand, fine differ-

entiation among the best sellers is most important. We formalize such goals as weighted versions of

Kendall τ distance between the estimated and true participant rankings. Then, in a setting in which

rater responses are binary, we develop an efficient non-convex optimization algorithm to find the

optimal joint distribution, i.e., the relationship between the participant’s quality and the probability

at which they should receive a positive rating. This joint distribution maximizes the asymptotic

weighted accuracy and the large deviation rate at which it is reached. Our algorithm exploits a

dimensionality reduction in which only ranking mistakes between similar participants can dominate

the large deviation rate at which the error decays. It finds, for example, that it is optimal for most

participants to receive primarily positive ratings when the goal is to identify unacceptable ones.

Part III, “Designing Voting Mechanisms on Civic Engagement Platforms” Platforms

can support far more than the exchange of individual goods and services. Civic engagement platforms

enable people to collectively make complex, public decisions in an axiomatically fair way, applying

the social choice tradition of Kenneth Arrow in a computational age. In participatory budgeting

(PB), for example, people vote on how to allocate millions of dollars across many candidate projects.

A key challenge in such systems is to design the elicitation mechanism: participants must be

able to share their opinions in a manner that is simple, expressive enough for decisions that lie in

high-dimensional spaces, and yet enables provably efficient aggregation. The design space ranges

from voters identifying their favorite project to negotiating with other voters directly. In this part,

I develop such mechanisms in a theory-driven way, and then test them either through synthetic

experiments or deployments, such as real municipal PB elections run on our group’s platform.1 Such

interdisciplinary work is essential to building the practical, large-scale, decentralized group decision-

making systems that will be central to the next generation of online platforms and marketplaces.

In Chapter 5, we develop a new method for people to collectively make a decision on a societal

budget. In our method, voters are sequentially asked for their ideal budget within a constraint set

determined by the previous voter’s answer. This process simulates stochastic gradient descent, and

the asymptotic output provably maximizes societal welfare in certain settings. In particular, if each

voter’s dis-utility for a budget is its `p distance from their ideal budget, then asking each voter for

1pbstanford.org. The platform has been used in over fifty elections, allocating tens of millions of dollars with
tens of thousands of voters. I was not involved in initial platform development, but contribute to its continued use.

pbstanford.org

1.2. BIBLIOGRAPHIC NOTES 7

their favorite budget in a local `q dual ball provides a stochastic gradient for the societal welfare

function.2 Then, sequentially querying voters in this manner simulates stochastic gradient descent.

We tested our method by running elections on Amazon Mechanical Turk,3 demonstrating that (a)

one can build an intuitive user interface, and (b) the procedure converges to a consistent point across

several runs, with a small number of voters. Overall, the work demonstrates that theory can be used

to build new mechanisms that make complex collective decisions by asking voters simple questions.

In Chapter 6, we show how to optimize an existing elicitation mechanism – K Approval, in

which each voter identifies their favorite K candidates – in a principled manner. We extend the

approach of the work in Part II, showing how the value of K (e.g., eliciting 3 candidates versus 4)

determines the large deviation rate at which the asymptotic outcome is learned, even when it does

not change the outcome. Then, with real voter data from over thirty elections (including from our

PB platform), we demonstrate that many multi-candidate elections that select W winners are run

sub-optimally: whereas voters are typically asked to identify their K = W favorite candidates (e.g.,

K = 1 in a winner-takes-all election), it is learning rate optimal to ask voters to identify their favorite

M > K candidates. This small change matters: in one election, asking for each voter’s two favorite

candidates versus single favorite would have been the difference between identifying the ultimate

winner with a 99.9% vs 80% probability after 400 voters. This rule-of-thumb has influenced our

recommendations for the elections run by our partner cities, demonstrating the impact of combining

theory with data analysis.

1.2 Bibliographic notes

Chapter 2 Joint with Hamid Nazerzadeh. To appear as an extended abstract at the ACM Confer-

ence on Economics and Computation (EC), in 2020 (Garg and Nazerzadeh, 2020). A journal

version is in submission (Garg and Nazerzadeh, 2019).

Chapter 3 Joint with Ramesh Johari. To appear as an extended abstract at the ACM Conference

on Economics and Computation (EC), in 2020 (Garg and Johari, 2020). A journal version is

in submission (Garg and Johari, 2019b).

Chapter 4 Joint with Ramesh Johari. Published at the International Conference on Artificial

Intelligence and Statistics (AISTATS), in 2019 (Garg and Johari, 2019a).

Chapter 5 Joint with Vijay Kamble, Ashish Goel, David Marn, and Kamesh Munagala. Journal

version published at the Journal of Artificial Intelligence Research (JAIR), in 2019 (Garg et al.,

2019b). Originally published in conference version form at the International Conference on

World Wide Web (WWW), in 2017 (Garg et al., 2017): copyright 2017 International World

Wide Web Conference Committee, published under Creative Commons CC By 4.0 License.

2For p ∈ {1, 2,∞}. All p, q ∈ [1,∞) ∪∞ s.t. 1/p+ 1/q = 1 work for a more restricted voter behavior model.
3A demo of the system I built is available at http://54.183.140.235/radius/50/mechanism/l2/.

http://54.183.140.235/radius/50/mechanism/l2/

8 CHAPTER 1. INTRODUCTION

Chapter 6 Joint with Lodewijk Gelauff, Sukolsak Sakshuwong, and Ashish Goel. Published at

the AAAI Conference on Human Computation and Crowdsourcing (HCOMP), in 2019 (Garg

et al., 2019a).

For each work, I contributed substantially to all aspects of the research and writing process.

Part I

Pricing in Online Marketplaces

9

Chapter 2

Driver Surge Pricing

2.1 Introduction

Ride-hailing marketplaces like Uber, Lyft, and Didi match millions of riders and drivers every day.

A key component of these marketplaces is a surge (dynamic) pricing mechanism. On the rider side of

the market, surge pricing reduces the demand to match the level of available drivers and maintains

the reliability of the marketplace, cf., (Hall et al., 2015), and so allocates the rides to the riders

with the highest valuations. On the driver side, surge encourages drivers to drive during certain

hours and locations, as drivers earn more during surge (Chen and Sheldon, 2016; Hall et al., 2017;

Lu et al., 2018). Castillo et al. (2017) show that surge balances both sides of this spatial market by

moderating the demand and the density of available drivers, hence avoiding so called “Wild Goose

Chase” equilibria in which drivers spend much of their time on long distance pick ups. Surge pricing

– along with centralized matching technologies – is often considered the primary reason that ride-

hailing marketplaces outperform traditional taxi services on metrics such as driver utilization and

overall welfare (Ata et al., 2019; Buchholz, 2017; Cramer and Krueger, 2016).

However, variable pricing (across space and time) must be carefully designed, since it can create

incentives for “cherry-picking” and rejecting certain trip requests. Such behavior increases earnings

of strategic drivers at the expense of other drivers, who may then disproportionately receive such trip

This chapter is joint with Hamid Nazerzadeh. Published as an extended abstract at the ACM Conference on
Economics and Computation (EC), in 2020 (Garg and Nazerzadeh, 2020). A journal version is in submission (Garg
and Nazerzadeh, 2019). We would like to thank Uber’s driver pricing data science team, in particular Carter Mundell,
Jake Edison, Alice Lu, Michael Sheldon, Margaret Tian, Qitang Wang, Peter Cohen, and Kane Sweeney for their
support and suggestions without which this work would have not been possible. We also thank Leighton Barnes,
Ashish Goel, Ramesh Johari, Vijay Kamble, Hannah Li, and Virag Shah. This work was funded in part by the
Stanford Cyber Initiative, the Office of Naval Research grant N00014-15-1-2786, and National Science Foundation
grants 1544548 and 1839229.

10

2.1. INTRODUCTION 11

(a) Multiplicative surge heatmap. “1.6x” on the map
means that the standard fares for trips from the cor-
responding area are increased by 60%.

(b) Additive surge heatmap. “$7.8” on the map
means that $7.8 is added to each trip’s standard
fare from the corresponding area.

Figure 2.1: Driver surge heatmaps with multiplicative and additive surge. On Uber, drivers see
a heatmap of surge when they are logged in but not on a trip, guiding them to higher earning
opportunities by signaling each location’s value (Lu et al., 2018). Structural simplicity is essential
to clearly communicate payments to drivers, and additive and multiplicative surge represent the two
simplest options.

requests after they are rejected by others, cf., (Cook et al., 2018). It also reduces overall platform

reliability, inconveniencing riders who may have to wait longer before receiving a ride.

Uber recently revamped its driver surge mechanism, in an attempt to improve the driver ex-

perience and make earnings more dependable (Uber, 2019b). The main change is making surge

“additive” instead of “multiplicative.” Under multiplicative surge, the driver payout from a

surged trip scales with the length of the trip. In contrast, under additive surge, the surge com-

ponent of the payout is constant (independent of trip length), with some adjustment for very long

trips (Uber, 2019c). (Figure 2.1 depicts the heat-map of surge on the driver app for each type of

surge.) We show that this change directly addresses the issue that drivers who strategically reject

trip requests may earn more than drivers who do not, even as total payments remain the same.

2.1.1 Contributions

We consider the design of incentive compatible (IC) pricing mechanisms in the presence of surge.

Trips differ by their length τ ∈ R+, and the platform sets the payout w(τ) for each trip in each

world state (i.e., surge vs non-surge). Drivers decide which trip requests σ ⊆ R+ to accept in each

world state, in response to the payout function w.1 The technical challenge is to design an IC pricing

mechanism w, for which accepting all trips is an earning maximizing strategy for drivers over a long

horizon, i.e., where σ = (0,∞) in each world state maximizes driver earnings.

1Drivers’ level of sophistication and experience varies, cf. Cook et al. (2018). An IC mechanism aligns the incentives
of drivers to accept all trips, for any level of strategic response to pricing strategies.

12 CHAPTER 2. DRIVER SURGE PRICING

We first study a continuous-time, infinite horizon single-state model, where trip requests arrive

over time according to a stationary Poisson process. We show that in this model, multiplicative

pricing – where the payout of a trip is proportional to the length of that trip – is incentive compatible.

To obtain this result, we show in Theorem 2.3.1 that the best response strategy of a driver to function

w, to maximize earnings, is a threshold strategy where the driver accepts all trips with payout rate
w(τ)
τ above some threshold. Hence, a mechanism that equalizes the payout rate of all trips is incentive

compatible.

We then present a model where the world state stochastically transitions over time between surge

and non-surge states, with trip payments, distributions, and intensity varying between states. In

such a dynamic system, completing a given trip affects a driver’s earnings beyond just the length

of the trip, i.e., imposes a future-time externality on the driver that is a function of the trip length.

The driver’s trip opportunity cost thus includes both what occurs during a trip, and a continuation

value. This externality causes multiplicative pricing to not be incentive compatible in the presence

of surge (Theorem 2.3.2), in contrast to the single-state model. Namely, drivers can benefit from

rejecting long trips in a non-surge state, and short trips in the surge state.

In Theorem 2.4.1, our main result, we propose a class of incentive compatible pricing functions

described in closed form of the model primitives. The prices incorporate driver temporal externali-

ties: during surge, short trips pay more per unit time than do long trips.

Next, we study surge pricing in our model numerically, showing that additive surge is incentive

compatible in more regimes of interest than is multiplicative surge. Finally, using RideAustin ride-

hailing data, we show that our theoretical insights extend to practice: additive surge correctly values

trips amid temporal externalities, unlike multiplicative surge.

To our knowledge, ours is the first ride-hailing pricing work to incorporate dynamic (non-

constant), stochastic demand and pricing. This component is essential to uncover how a particular

trip imposes substantial temporal externalities on a driver’s future earnings.

2.1.2 Related Work

We discussed some of the related work on surge pricing above. Here, we briefly review the lines of

research closest to ours. We refer the reader to a recent survey by Korolko et al. (2018) for a broader

overview of the growing literature on ride-hailing markets.

Driver spatio-temporal strategic behavior. Several works model strategic driver behavior

in a spatial network structure, and across time in a single-state. Ma et al. (2018) develop spatially

and temporally smooth prices that are welfare-optimal and incentive compatible in a deterministic

model. Their prices form a competitive equilibrium and are the output of a linear program with

integer solutions. We similarly seek to develop incentive compatible pricing schemes, and both

works broadly construct VCG-like prices that account for driver opportunity costs. Our focus is on

structural aspects (e.g., multiplicative in trip length) in a non-deterministic model.

2.1. INTRODUCTION 13

Bimpikis et al. (2016) show how the platform would price trips between locations, taking into

account strategic driver re-location decisions, in a stationary model with discrete locations. They

show that pricing trips based on the origin location substantially improves surplus, as well as the

benefits of “balanced” demand patterns. Besbes et al. (2018b) consider a continuous state space

setting and show how a platform may optimally set prices across the space in reaction to a local-

ized demand shock to encourage drivers to relocate; their model has driver cost to re-locate, but

no explicit time dimension. They find that localized prices have a global impact, and, e.g., the

optimal pricing solution incentivizes some drivers to move away from a demand shock. Afèche

et al. (2018) consider a two state model with demand imbalances and compare platform levers such

as limiting ride requests and directing drivers to relocate, in a two-state fluid model with strategic

drivers. They upper-bound performance under these policies, and find that it may be optimal for

the platform to reject rider demand even in over-supplied areas, to encourage driver movement. A

similar insight is developed by Guda and Subramanian (2019) who explicitly model market response

to surge pricing. Finally, Yang et al. (2018) analyze a mean-field system in which agents compete

for a location-dependent, time-varying resource, and decide when to leave a given location. They

leverage structural results—agents’ equilibrium strategies depend just on the current resource level

and number of agents—to numerically study driver relocation decisions as a function of the platform

commission structure.

Pricing in ride-sharing and service systems. There is a growing literature on queuing

and service systems motivated in part by the ride-sharing market. For example, Besbes et al.

(2018a) revisit the classic square root safety staffing rule in spatial settings, cf., Bertsimas and

van Ryzin (1991, 1993). Much of the focus of this line of work is how pricing affects the arrival

rate of (potentially heterogeneous) customers, and thus the trade-off between the price and rate of

customers served in maximizing revenue.

Banerjee et al. (2015) consider a network of queues in which long-lived drivers enter the system

based on their expected earnings but cannot reject specific trip requests. Under their model, dynamic

pricing cannot outperform the optimal static policy in terms of throughput and revenue, but is more

robust. Cachon et al. (2017) argue in contrast that surge pricing and payments are welfare increasing

for all market participants when drivers decide when to work. Similar in spirit to our work, Chen and

Hu (2018) consider a marketplace with forward-looking buyers and sellers who arrive sequentially

and can wait for better prices in the future. They develop strategy-proof prices whose variation

over time matches the participants’ expected utility loss incurred by waiting. Lei and Jasin (2016)

consider a model where customers arrive over time and utilize a capacity constrained resource for a

certain amount of time. They develop an asymptotically revenue-maximizing, dynamic, customer-

side pricing policy, even when service times may be heterogeneous. Glazer and Hassin (1983)

consider taxi-driver strategic responses to multiplicative and affine pricing, as we do, focusing on

deviations in which a driver can take a circuitous route in order to increase the length of a trip.

14 CHAPTER 2. DRIVER SURGE PRICING

One of the most related to our work in modeling approach, Kamble (2019) studies how a freelancer

can maximize long-term earnings with job-length-specific prices, balancing on-job payments and

utilization time. In his model, a freelancer sets their own prices for a discrete number of jobs

of different lengths and, with assumptions similar to our single-state model, it is optimal for the

freelancer to set the same price per hour for all jobs. We further discuss the relationship of this work

to our single-state model below.

Organization. The rest of the paper is organized as follows. Section 2.2 contains our model; we

further derive driver earnings as it depends on their strategy, and formalize the platform objective.

In Section 2.3, we formulate a driver’s best response strategy to affine pricing functions in each

model. In Section 2.4, we present incentive compatible pricing functions for our surge model. In

Section 2.5, we numerically compare the IC properties of additive and multiplicative surge. Finally, in

Section 2.6, we empirically compare additive and multiplicative surge using data from the RideAustin

marketplace.

2.2 Model, driver earnings, and platform objective

We consider a large ride-hailing market with decoupled pricing, from the perspective of a single

driver. This driver receives trip requests of various lengths, whose rate, distribution, and payment

are known to the driver and determined exogeneously to decisions to accept or decline requests. We

do not consider spatial heterogeneity in our setting, to focus on the temporal opportunity cost and

continuation value based on a length of the trip.2

In this section, we first in Section 2.2.1 present the primitives of our two models, a single-state

model and a dynamic model with surge pricing. Then in Section 2.2.2 we describe the driver’s

strategy space and derive the driver reward in each model. Next, in Section 2.2.3, we formalize the

platform objective and technical challenge solved in this work. We conclude with a short discussion

on our model’s relationship to practice in Section 2.2.4.

2.2.1 Model primitives

We start with the model primitives in each model.

Single-state model

We start with a model where there is a single world state, i.e., all model components are constant

over time. Time is continuous and indexed by t. At each time t, the driver is either open, or busy.

2We believe our insight can be extended to a spatial setting where the price can be decomposed to a time-based
component, based on the length of the trip, and a spatial component based on the destination of the trip. However,
this would be beyond the scope of this work, cf., Bimpikis et al. (2016).

2.2. MODEL, DRIVER EARNINGS, AND PLATFORM OBJECTIVE 15

While open, the driver receives job (trip) requests from riders according to a Poisson process at rate

λ, i.e., the time between requests is exponential with mean 1
λ . Job lengths, denoted by τ , are drawn

independently and identically from a continuous distribution F .

If the driver accepts a job request of length τ at time t (as discussed below), they receive a

payout of w(τ) at time t+ τ , at which time they become open again. Otherwise, the driver remains

open. Except where specified, the only assumption on w is that it is asymptotically (sub)-linear:

∃c : lim infτ→∞
w(τ)
τ ≤ c, which ensures that the driver reward is also bounded.

Dynamic model with surge pricing

A model with fixed pricing and arrival rates of jobs is not a realistic representation of ride-hailing

platforms. In particular, rider demand (both in intensity and in distribution) may vary substantially

over time, even within a day (cf. Appendix Figure A.4d). To study how this dynamic nature affects

driver decisions, we consider a model with two states, i ∈ {1, 2}, where i = 2 denotes the surge state.

(At a high level, the surge state provides a higher earnings rate to the driver. The precise definition

is in Section 2.2.2, after we formulate the driver’s earnings rate in each state).

The world evolves stochastically between the two states, as a Continuous Time Markov Chain

(CTMC). When the world is in state i, the state changes to j according to a fixed exponential clock

that ticks at rate λi→j , independently of other randomness.

When open in state i, the driver receives job requests at rate λi with lengths τ ∼ Fi, and collects

payout according to payment function wi, which is presumed to have the same properties as w in

the single-state model. The state of the world may change while a driver is on trip. Crucially, the

driver receives payments according to the state of the world i when the trip begins. We will use

w = {w1, w2} to denote the overall pricing mechanism.

2.2.2 Driver strategies and earnings

In our model, the driver can decide whether to accept the trip request, with no penalty.3

In the single-state model, let σ ⊆ R+ , (0,∞) denote the driver’s (fixed) strategy, where τ ∈ σ
implies that a driver accepts job requests of length τ . In the dynamic model, the driver follows policy

σ = {σ1, σ2}, where σi ⊆ R+ indicates the jobs accepted in state i. We assume that driver policies

are measurable with respect to F (corresponding Fi in dynamic model); for technical reasons, in the

dynamic model we also assume that σi consist of a union of open intervals, i.e., are open subsets of

R+. When we write equalities with policies σ, we mean equality up to changes of measure 0.

The driver is long-lived and aims to maximize their own lifetime average hourly earnings on the

platform, including both open and busy times. Let R(w, σ, t) denote the (random) total earnings

from jobs accepted from time 0 up to time t if the driver follows policy σ and the payout function

3This assumption follows Uber’s current practice. We further discuss the driver’s information set in Section 2.2.4.

16 CHAPTER 2. DRIVER SURGE PRICING

is w. Then, the driver’s lifetime earnings rate is

R(w, σ) , lim inft→∞
R(w, σ, t)

t
.

This earnings rate is a deterministic (non-random) quantity, and is a function of the driver policy

σ, pricing function w, and the primitives.

A driver policy σ∗ is optimal (best-response) with respect to pricing function w if it maximizes

the lifetime earnings rate of the driver among all policies: R(w, σ∗) ≥ R(w, σ), for all valid policies σ

(i.e., measurable with respect to F or Fi, with σi open sets). Then, pricing function w is incentive

compatible (IC) if accepting all job requests is optimal with respect to w, i.e., σ = (0,∞) in

the single-state model or σ = {(0,∞), (0,∞)} in the dynamic model is optimal with respect to w.

In other words, payment function w is incentive compatible if an earnings-maximizing driver (who

knows all the primitives, w, and the trip length τ at request time) accepts every trip request.

We now analyze the driver’s lifetime earnings rate R(w, σ) for each model.

Driver earnings in the single state model

In the single-state model, the primitives directly induce a renewal reward process, where a given

renewal cycle is the time a driver is newly open to the time they are open again after completing a

job. Let W (σ) be the mean earnings on trips τ ∈ σ, i.e., the expected earning in a renewal cycle;

let T (σ) be the sum of the expected wait time to an accepted trip and the expected length of a trip,

and thus the expected renewal cycle length; let F (σ) be the probability the driver receives a request

in σ. Then, the lifetime driver mean hourly earnings (earnings rate) is

R(w, σ) =
W (σ)

T (σ)
=

1
F (σ)

∫
τ∈σ w(τ)dF (τ)

1
F (σ)λ + 1

F (σ)

∫
τ∈σ τdF (τ)

The first equality follows from the renewal reward theorem, and holds with probability 1.

Driver earnings in the dynamic model

For the dynamic model, on the other hand, we cannot directly use the renewal reward theorem

with a renewal cycle containing just a single trip. The driver’s earning on a given trip is no longer

independent of earnings on other trips: given a job that starts in the surge state, the driver’s next

job is more likely to also start in surge. Given whether each job started in the surge state, however,

job earnings are independent. We can use this property to prove our next lemma, which gives the

driver earnings rate in the dynamic model. Let µi(σ) be the fraction of time the driver spends either

open state i or on a trip that starts in state i.

Lemma 2.2.1. In the dynamic model, the earnings rate can be decomposed into each state i earnings

2.2. MODEL, DRIVER EARNINGS, AND PLATFORM OBJECTIVE 17

rate Ri(wi, σi) and fraction of time µi(σ) spent in state i:

R(w, σ) = µ1(σ)R1(w1, σ1) + µ2(σ)R2(w2, σ2) with probability 1.

As in the single-state model, Ri(wi, σi) = Wi(σi)
Ti(σi)

, where

Wi(σi) =
1

Fi(σi)

∫

τ∈σi
wi(τ)dFi(τ), Ti(σi) =

1

λiFi(σi)
+

1

Fi(σi)

∫

τ∈σi
τdFi(τ)

We prove the result by defining a new renewal process, in which a single reward renewal cycle

is: the time between the driver is open in state 1 to the next time the driver is open in state 1 after

being open in state 2 at least once. In other words, each renewal cycle is composed of some number

(potentially zero) of sub-cycles in which the driver is open in state 1 and then is open in state 1

again after a completed trip; one sub-cycle starting with the driver open in state 1 and ending with

being open in state 2 (either after a completed trip or a state transition while open); some number

(potentially zero) of sub-cycles in which the driver is open in state 2 and then is open in state 2

again after a completed trip; and finally one sub-cycle starting in state 2 and ending with the driver

open in state 1.

Given the number of such renewal reward cycles completed up to time t, the total earnings on

trips starting in each state (earnings in each sub-cycle) are independent of each other, and then we

use Wald’s identity (Wald, 1973) to separate µi(σ) and Ri(σi).

Note that Ti(σi) is not exactly the expected length of time in a single sub-cycle in a state given

σi, but rather is proportional to it; the multiplicative constant 1
λiFi(σi)+λi→j

cancels out with the

same constant in the expected earnings in a single sub-cycle in a state given σi. This constant

emerges from the primitives: when the driver is open in state i, there are two competing exponential

clocks (with rates λiFi(σi) and λi→j , respectively) that determine whether the driver will accept a

request before the world state changes.

What does µi(σ) look like? We defer showing the exact form to Section 2.4.1 in advance of

developing incentive compatible pricing. Here, we provide some intuition: the trips that a driver

accepts in each state determines the portion of their time spent on trips started in each state. If

a driver never accepts trips in the non-surge state, they will be open and thus available for a trip

as soon as surge begins. Inversely, if a driver accepts a long surge trip immediately before surge

ends, they will be paid according to the surge payment function w2 even though surge has ended.

Surprisingly, given the complex formulation of the reward R(w, σ) as it depends on σ = {σ1, σ2},
we find the structure of optimal policies as they depend on the pricing wi, as well as incentive

compatible pricing functions.

Finally, we can now precisely define what it means for i = 2 to be the surge state: it has a higher

potential earning rate than state 1; ∃σ2 such that R2(w2, σ2) > R1(w1, σ1),∀σ1 ⊆ R+.4

4This assumption is different than the statement w2(τ) ≥ w1(τ), ∀τ , and neither implies the other; it is a condition

18 CHAPTER 2. DRIVER SURGE PRICING

2.2.3 Platform objective and constraints

Having derived the driver reward, we now describe the platform objective, setting up the technical

challenge we solve in the rest of the work. Recall that our model is decoupled: rider and driver

prices are determined separately. Under decoupled pricing, the platform has under its control both

the price pi(τ) charged to the rider and the payment wi(τ) paid to the driver for a trip of length

τ—and the two values are not necessarily related at the trip level. This modeling assumption follows

the current practice (Uber, 2019e) and allows us to focus on the drivers’ perspective, without further

complicating the analysis.5

What should be the role of driver payments with decoupled pricing? In practice, the platform

quotes the rider a price and ‘guarantees’ fulfillment if a ride is requested; driver payments should

thus primarily ensure that all requested rides are fulfilled, motivating our goal of designing incentive

compatible prices. In Appendix Section A.1.1, we formalize this intuition by considering driver

payments w as a sub-problem of the comprehensive platform challenge, involving jointly setting both

rider prices and driver payments to maximize an objective (e.g., profit or welfare). We establish that

– with decoupled pricing and an earnings-maximizing driver within our model – this joint problem

can be decomposed into one in which the rider pricing (not considered in this work) determines the

objective value, subject to finding a driver payment policy w that satisfies incentive compatibility

and a driver participation constraint : that the driver earnings rate is higher than an outside option

earnings rate (denoted R), i.e., maxσ R(w, σ) ≥ R.

In the dynamic model, we additionally consider per-state driver earnings constraints, Ri(wi, (0,∞)) =

Ri, for some exogenous R2 > R1. This constraint comes from practice, via features not directly

captured in our model. As detailed in Appendix Section A.1.2, currently platforms impose a busi-

ness constraint to pass on rider revenue in each world state to the driver, i.e., the constraints Ri are

determined by per-state revenue, a function of latent demand and rider prices. If the platform has

more flexibility, Ri may also be optimized, for example to induce drivers to position themselves in

areas with more frequent surges, cf. Asadpour et al. (2019); Besbes et al. (2018b); Lu et al. (2018);

i.e., revenue during one spatio-temporal period may be used to subsidize driver payments in another

period. We do not directly consider how the platform should set Ri (or R), as doing so depends

heavily on rider pricing and resulting demand. However, our results do establish a range of Ri for

which incentive compatible prices can be constructed.

This decomposition is how decoupled surge pricing is set in practice, and for the rest of this work

we seek a payment policy that satisfies these conditions.

jointly on λi, Fi, wi, (but not λi→j), indicating that a driver can, following some policy, earn more while in the surge
state than possible following any policy in the non-surge state.

5Coupled pricing imposes more constraints. Bai et al. (2018) and Bikhchandani (2020) both find that the platform
should adjust its payout ratio with demand—an example of decoupling—to maximize profit or overall welfare.

2.3. INCENTIVE COMPATIBILITY WITH AFFINE PRICING 19

2.2.4 Practical considerations

Our model is stylized in several important respects, and ride-hailing practice is not consistent across

marketplaces, time, or geography. Our theoretical model reflects our view on the most relevant

components from practice.

Driver heat-maps and affine pricing We are especially interested in affine pricing schemes,

where wi(τ) = miτ + ai, with mi ≥ 0 (in the single-state model: w(τ) = mτ + a, with m ≥ 0; we

refer to the case with ai > 0 (ai < 0) as positive (negative) affine pricing). Such pricing functions

can be communicated as time and distance rates (see, e.g., Uber (2019d)), and the surge component

displayed on a heat-map. This simplicity is an important desiderata from practice, where payments

should be clear to drivers.

Driver information structure: trip time and time to the rider. We assume that the

platform reveals the total trip length to the driver at the time of request, and that the driver can

freely reject it without penalty. Drivers often cannot see the rider’s destination or the trip length

until they pick up the rider (but they can reject a request based on the pick-up time to the rider,

without penalty).6 Some drivers call ahead to find out the rider’s destination or even cancel the trip

at the pick-up location, creating negative experiences for both the rider and the driver.7 Our notion

of incentive compatibility is ex-post, implying that drivers would accept all trips, even if the trip

length is not revealed, and so this setting from practice is covered as well. Furthermore, in practice,

jobs have two components: the time it takes to pick up the rider, and the time while the rider is

in the driver’s vehicle – and the former component is typically unpaid.8 Our model combines these

two components into an overall trip length, which determines payments.

Markovian surge and model limitations. In practice, surge has strong intra-day patterns

– for example, rush hours have higher average surge values, cf. Appendix Figure A.3b. However,

evolution of surge on finer time scales, on the level of drivers’ individual trip decisions, is more

volatile and believably Markovian, cf. Appendix Figure A.3c. Our theoretical model assumes that

surge is Markovian and binary and the response of a single driver, and further ignores spatial effects.

We discuss such issues in Sections A.1.3 and A.2.1, and our empirical analysis in Section 2.6 provides

evidence that our insights extend to practice despite these theoretical limitations.

2.3 Incentive compatibility with affine pricing

In this section, we study the incentive compatibility of affine pricing. In Section 2.3.1, we first

characterize the driver’s best-response strategy with respect to any pricing function w in the single-

state model. We then observe that multiplicative pricing, a special case of affine pricing where

6This practice is not consistent across marketplaces and locations. For example, in California as of January 2020,
Uber shows the driver the destination and payment estimate at request time.

7We note that destination discrimination is against Uber’s guidelines and could lead to deactivation (Uber, 2019a).
8Lyft has recently experimented with paying drivers for the time it takes to pick up the rider (Auerbach, 2019).

20 CHAPTER 2. DRIVER SURGE PRICING

w(τ) = mτ , is incentive compatible. In contrast, in Section 2.3.2, we show that in the dynamic

model, multiplicative pricing may no longer be incentive compatible. We further derive the structure

of optimal driver policies in each state with respect to affine or multiplicative pricing, which will

enable numerical study of the incentive compatibility properties of additive and multiplicative surge

in Section 2.5. Section 2.3.3 discusses the key differences in the two models, setting up Section 2.4

where we derive incentive compatible pricing functions for the dynamic model.

2.3.1 Single-state model: multiplicative pricing is incentive compatible

Our first result is a simple optimal driver policy in the single-state model.

Theorem 2.3.1. With a single state, for each w there exists a constant cw ∈ R+ such that the

policy σ∗ =
{
τ : w(τ)

τ ≥ cw
}

is optimal for the driver with respect to w.

Theorem 2.3.1 establishes that, in a single-state model with Poisson job arrivals, the length of

the job is not important, only the hourly rate while busy on the job. The optimal cw in the policy

is not necessarily cw = sup w(τ)
τ : drivers must trade off the earnings rate while on a trip with their

utilization rate; the more trips that a driver rejects, the longer the wait for an acceptable trip. In

the appendix we prove the result by, starting at an arbitrary policy σ, making changes to the policy

that increase the earnings rate while on a job without decreasing the utilization rate. Thus, each

such change improves the reward R(w, σ), and the sequence of changes results in a policy of the

above form, for some threshold c′. Then, this threshold c′ can be optimized, leading to an optimal

policy of this form.

An immediate corollary of Theorem 2.3.1 is that w(τ) = mτ , for m > 0, is IC. In other words,

if the platform pays a constant rate w(τ)
τ = m to busy drivers, then in the single-state model it is

in the driver’s best interest to accept every trip. This result is driven by the following insight for

Poisson arrivals: while receiving long trip requests is more beneficial to drivers in the single-state

setting as they increase one’s utilization rate (the driver is busy for a longer time until the next open

period), rejecting short trips to cherry-pick long trips decreases utilization by the same amount.9

Further note that, given an earnings rate target R, calculating the multiplier m and thus an IC

pricing policy is trivial.

On the other hand, affine pricing may not be incentive compatible because short trips are worth

more per unit time than are long trips: w(τ)
τ = m+ a

τ . The optimal policy may thus be to accept trips

in σ∗ = (0, T) for some T . However, our next proposition establishes that affine pricing is incentive

compatible if the additive component stays small enough as a function of the request arrival rate:

With a single state, w(τ) = mτ + a is incentive compatible if 0 ≤ a ≤ m
λ .

9This insight is similar to a result of Kamble (2019); however, in our setting the driver’s strategy σ is a subset of
R+ denoting the job requests accepted, as opposed to a discrete set of prices charged. Further, in our settings the
driver responds to the platform’s prices instead of setting prices, enabling a wider range of IC pricing mechanisms.

2.3. INCENTIVE COMPATIBILITY WITH AFFINE PRICING 21

The sufficient condition has a simple intuition: when open, the expected amount of time the

driver must wait for the next request is 1
λ ; if on-trip time is valued at m per unit-time, then with

a = m
λ the additive component can be interpreted as paying for the driver’s expected waiting time.

Thus, while a driver may earn more per hour for a short trip than a long trip with affine pricing,

such a short trip is not worth the time the driver must wait for the next trip request. We further

note that the condition in the proposition is not a necessary one; however, deriving necessary and

sufficient conditions in closed form requires specifying the trip distribution F .

As we’ll see in the next sub-section, the structure of optimal driver policies in reaction to affine

pricing differs sharply in the dynamic model.

2.3.2 Dynamic model: multiplicative pricing is not incentive compatible

In the single-state model, multiplicative pricing is incentive compatible; a driver cannot benefit in

the future by rejecting certain trips if all trips have the same on-trip earning rate. In contrast, we

now show that the same insight does not hold for the dynamic model, as a driver can influence

future trips through the decision to accept or reject certain trips.

Theorem 2.3.2. If w = {w1, w2}, there exists an optimal policy σ = {σ1, σ2} (i.e., that maximizes

R(w, σ)), defined with parameters t1, t2, t3, t4, t5, t6 ∈ [0,∞) ∪ {∞}, such that

� Non-surge state driver optimal policy σ1:

– If w1 is multiplicative or positive affine, σ1 rejects long trips, i.e., σ1 = (0, t1).

– If w1 is negative affine, σ1 rejects short and long trips, i.e., σ1 = (t2, t3).

� Surge state driver optimal policy σ2:

– If w2 is multiplicative or negative affine, σ2 rejects short trips, i.e., σ2 = (t4,∞).

– If w2 is positive affine, σ2 rejects medium length trips, i.e., σ2 = (0, t5) ∪ (t6,∞).

Furthermore, there exist settings where ti’s take positive finite values, and in which multiplicative

pricing is not incentive compatible in either state.

We discuss the intuition in the next section. In the appendix, we prove the result for each case as

follows: fixing σj for j 6= i, we start with an arbitrary open set σi = ∪∞k (`k, uk), recalling that open

sets can be written as a countable union of such disjoint intervals. Then, we find ∂
∂uk

R(w, σ), the

derivative of the set function R(w, σ) with respect to one of the interval upper end-points of σi, i.e.,

uk. This derivative is the infinitesimal change in the overall reward if σi is expanded by increasing uk,

and it has useful properties. In the surge state with multiplicative pricing, for example, ∂
∂uR(w, σ)

has the same sign as a function that is increasing in u, for each fixed σ. With affine pricing, it

has the same sign as a quasi-convex (positive affine in the surge state) or quasi-concave (negative

22 CHAPTER 2. DRIVER SURGE PRICING

affine in the non-surge state) function in u, for a fixed σ. Such properties enable constructing

a sequence of changes to σi that each do not decrease the reward R(w, σ), with the limit being

a policy of the appropriate form. In particular, we can show that any policy that is not of the

appropriate form above has ∂
∂uk

R(w, σ) ≥ 0 for some uk, allowing local improvements until adjacent

intervals (`k, uk), (`k+1, uk+1) can be combined or expanded to infinity. The numerics in Section 2.5

provide examples in which multiplicative pricing is not incentive compatible, i.e., where policies of

the form above with positive finite constants strictly increase driver earnings over the driver policy

that accepts all trip requests.

The results of rejecting long trips in non-surge (and short trips in surge) extend to arbitrary

functions where w1(τ)
τ is non-increasing (respectively, w2(τ)

τ is non-decreasing). The other two results

do not hold with such generality, as the behavior of the derivative may be arbitrarily complex.

2.3.3 Why is multiplicative surge pricing not incentive compatible?

“I thoroughly dislike short trips ESPECIALLY when I’m picking up in a waning surge zone”

Anonymous driver

What explains the difference between multiplicative pricing being incentive compatible in the single-

state model but not in the dynamic model? In the latter, a driver’s policy affects not just their

earnings while they are busy, but also the fraction of time during which they are busy during the

lucrative surge state. In particular, it turns out, accepting short trips during surge may reduce the

amount of time that a driver is on a surge trip! Appendix Figure A.1 shows in an example how the

fraction of time in the surge state µ2(σ) changes as a function of how many short trips the driver

rejects.

The anonymous driver we quote above identifies the key effect: when surge is short-lived, a driver

may only have the chance to complete one surge trip before it ends. Thus, the driver may be better

off waiting to receive a longer trip request, as with multiplicative surge they are paid a higher rate

for the full duration of the longer trip. (Of course, there is a trade-off as rejecting too many trip

requests risks not receiving any acceptable request before surge ends). In the surge state, then,

multiplicative pricing does not compensate drivers enough to accept short trips that may reduce

their future surge earnings. In the non-surge state, analogously, multiplicative pricing under-values

long trips that may prevent taking advantage of a future surge.

Affine pricing is a first, reasonable attempt at fixing these issues. In the surge state, the additive

value makes the previously under-valued short trips comparatively more valuable, as the earnings

per unit time w2(τ)
τ = m2 + a2

τ (with a2 > 0) are now higher for short trips. Unfortunately, with

such pricing the structure for the surge optimal policy becomes σ2 = (0, t5) ∪ (t6,∞) – if the values

m2, a2 are not balanced correctly, the additive value is enough to make accepting extremely short

trips (0, t5) profitable; for medium-length trips τ ∈ (t5, t6), however, the additive value is not large

2.4. INCENTIVE COMPATIBLE SURGE PRICING 23

enough to make up for the fact that accepting the trip prevents accepting another surged trip before

surge ends. Similarly, negative affine pricing in the non-surge state, w1(τ) = m1τ+a1, (with a1 < 0)

is now too harsh on very short trips but potentially not enticing enough for long trips.

Next, we fix these issues and construct incentive compatible pricing schemes for our dynamic

model. Then, in Section 2.5 we leverage structural results derived here to numerically compare the

incentive compatibility of additive and multiplicative surge.

2.4 Incentive Compatible Surge Pricing

We now present our main result, regarding the structure of incentive compatible pricing in the

dynamic model. To this aim, in Section 2.4.1, we characterize µi(σ), how much time the driver

spends in each state. In Section 2.4.2, we present incentive compatible prices, under a condition

on the ratio of per-state earning rate constraints, R1

R2
. Section 2.4.3 discusses an intuition of the IC

pricing structure in terms of the driver’s opportunity cost.

2.4.1 Transition probabilities and expected time spent in each state

The expected fraction of time spent in each state, µi(σ), depends both on the evolution of the world

state and the trips a driver accepts. To quantify the effects previewed in Section 2.3.3, we first

analyze the evolution of the world state CTMC.

Lemma 2.4.1. Suppose the world is in state i at time t. Let qi→j(s) denote the probability that the

world will be in state j 6= i at time t+ s. Then,

qi→j(s) =
λi→j

λi→j + λj→i

[
1− e−(λi→j+λj→i)s

]

Note that qi→j(s) is not just the probability that the world state transitions once during time

(t, t+ s), but the probability that it transitions an odd number of times. This formulation emerges

through a standard analysis of two-state CTMCs, in which this probability can be found through

the inverse of the Laplace transform of the inverse of the resolvent of the Q-matrix for the system.

Incorporating this value in closed form is the main hurdle in extending our results to general systems

with more than two states. Using this formulation, the following lemma shows µi(σ).

Lemma 2.4.2. Let Ti(σi) be as defined in Lemma 2.2.1. The fraction of time a driver following

strategy σ = {σ1, σ2} spends either open in state i or on a trip started in state i is

µi(σ) =
λiFi(σi)Ti(σi)Qj(σj)

λjFj(σj)Tj(σj)Qi(σi) + λiFi(σi)Ti(σi)Qj(σj)

where Qi(σi) = λi→j + λi

∫

τ∈σi
qi→j(τ)dFi(τ)

24 CHAPTER 2. DRIVER SURGE PRICING

We prove this lemma by finding the expected number of sub-cycles in each state i, i.e., within a

larger renewal reward cycle as defined, the expected number of sub-cycles that start with the driver

being open in state i. This expectation is the mean of a geometric random variable parameterized

by the probability that the driver will next be open in state j, given the driver is currently open in

state i. Qi(σi) is proportional to this probability. (As with Ti(σi), there is a normalizing constant
1

λiFi(σi)+λi→j
); the larger it is, the fewer sub-cycles that are spent in state i. It has two components:

the first is the probability that the state changes before the driver accepts a trip request; the second

is the probability that the world state is j when the driver completes a trip. Thus, the numerator

in µi(σ) is proportional to the length of a sub-cycle in state i, times the fraction of sub-cycles that

are started in state i. The larger Qj(σj) or Ti(σi), the more time the driver spends in state i.

2.4.2 Incentive Compatible pricing in the dynamic model

How can the platform create incentive compatible pricing given the previously described effects?

Our main result establishes when such IC prices exist, and reveals their form.

Theorem 2.4.1. Let R1 < R2 be target earning rates during non-surged and surge states, respec-

tively. There exist prices w = {w1, w2} of the form

wi(τ) = miτ + ziqi→j(τ),

where m1,m2, z2 ≥ 0 (but z1 may be either positive or negative), such that the optimal driver policy

is to accept every trip in the surge state and all trips up to a certain length in the non-surge state.

Furthermore, for R1

R2
∈ [C, 1], there exist fully incentive compatible prices of this form, where

C = 1− 1

T1

Q2(λ12T1 −Q1) +Q1(T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)
∈ [0, 1),

and Ti = λiFi(σi)Ti((0,∞)), and Qi = Qi((0,∞)).

Section 2.4.4 contains a proof sketch. To convey intuition, Figure 2.2a shows pricing functions in

each state, plotting wi(τ)
τ against τ . Compared to multiplicative pricing with constant wi(τ)

τ , IC surge

pricing pays more for short trips and less for long trips. Inversely, IC non-surge pricing pays more

for long trips than it does for short trips. Further, as τ increases, w1(τ) approaches w2(τ), reflecting

the fact that the opportunity cost for long trips does not depend as strongly on the state in which it

started (as discussed in Section 2.4.3). Next, observe that IC surge pricing w2(τ) = m2τ+z2q2→1(τ)

is approximately affine, as q2→1(τ) (plotted in Figure 2.2b) is upper bounded by λ2→1

λ1→2+λ2→1
. The

two components of pricing, mi and zi, thus balance the comparative benefit of long and short trips.

Rather surprisingly and contrary to platform design focus, the non-surge state is difficult to make

incentive compatible. Our result establishes that there always exist payments, for any target driver

earning rates R1 < R2, such that accepting every trip in the surge state is driver optimal; the same

2.4. INCENTIVE COMPATIBLE SURGE PRICING 25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

τ , Length of trip

0.6

0.8

1.0

1.2

1.4

1.6

w
i(
τ
)

τ
,
P
ri
ce

p
er

u
n
it
ti
m
e

Multiplicative surge

Multiplicative non-surge

IC surge

IC non-surge

(a) Price per unit time wi(τ)
τ

for trips of different
lengths τ in the each state for Incentive Compatible
and multiplicative pricing when R2 = 1 and R1 = 2

3
.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
τ

0.0

0.2

0.4

0.6

0.8

q 2
→
1
(τ
)

(b) q2→1(τ) when λ1→2 = 1, λ2→1 = 4. IC surge
pricing is well-approximated by an affine function:
z2q2→1(τ) is approximately constant for longer trips.

Figure 2.2: The primitives are as follows: λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4; in both states,
trip lengths are distributed according to a Weibull distribution with shape 2 and mean 1

3 . These
parameters reflect realistic average trip to wait time values, and that surge tends to be short-lived
compared to non-surge times.

is not true for the non-surge state. Figure 2.3 shows how C changes with the primitives. We further

give intuition for the form of payment scheme wi and the range [C, 1] in Section 2.4.3, showing how

they emerge from the driver’s opportunity cost.

Finally, for a given feasible R1, R2, there is a range of mi, zi that form an incentive compatible

pricing scheme. Why? A driver who rejects a trip request waits to receive another request, during

which time they do not earn money. This wait time tilts the driver toward accepting any trip request

to maximize earnings. Thus, there is flexibility in the balance between short and long trip earnings.

The same insight drives Proposition 2.3.1; even in the single-state model, trips do not have to have

the same earnings per unit time, w(τ)
τ , as long as they meet some minimum threshold, w(τ)

τ ≥ cw.

2.4.3 Opportunity cost intuition for incentive compatible pricing

We now present some intuition to understand Theorem 2.4.1 and our incentive compatible pricing

scheme. The payment wi(τ) must account for the driver’s opportunity cost (in a VCG-like manner),

i.e., how much the driver can expect to earn if they instead reject the trip request. Of course,

this opportunity cost itself depends on the pricing scheme w. We now break down parts of this

opportunity cost.

On-trip opportunity cost. While the driver is on-trip, the world state continues to evolve: surge

might end or start, affecting the opportunity cost.

26 CHAPTER 2. DRIVER SURGE PRICING

0.0 0.2 0.4 0.6 0.8 1.0

Mean trip length

0.0

0.2

0.4

0.6

0.8

C

Vary both F1, F2

Vary F1

Vary F2

(a) C as the mean trip length changes.

0 2 4 6 8 10

State change rate

0.2

0.3

0.4

0.5

0.6

0.7

C

λ2→1

λ1→2

(b) C as λi→j change.

Figure 2.3: How C, the ratio R1/R2 at which IC pricing is feasible from Theorem 2.4.1, changes (1)
with respect to the mean trip length, and (2) with respect to λi→j . Except for those that are varied
in each plot, the primitives are fixed to those used in Figure 2.2: λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4
and, in both states, trip lengths are distributed according to a Weibull distribution with shape 2
and mean 1

3 .

Let φki (τ) be the expected amount of time that the world is in state k during time (t, t + τ),

given that it is in state i at time t. Then, by integrating qi→j(s) from 0 to τ :

φii(τ) =

[
λj→i

λi→j + λj→i

]
τ +

[
1

λi→j + λj→i

]
qi→j(τ)

φji (τ) =

[
λi→j

λi→j + λj→i

]
τ −

[
1

λi→j + λj→i

]
qi→j(τ) = τ − φii(τ)

Now, let R̃i be the driver’s earnings rate while the world state is i (whether the driver is open, or on

a trip that started in either state). R̃i is close to but not exactly Ri, which instead is the earnings

rate counting open time and trips that start in state i. Then, the driver’s opportunity cost during

time (t, t+ τ), starting in state i is

R̃iφ
i
i(τ) + R̃jφ

j
i (τ) =

[
λj→iR̃i + λi→jR̃j
λi→j + λj→i

]
τ +

[
R̃i − R̃j

λi→j + λj→i

]
qi→j(τ)

Though R̃i is not a simple expression in terms of Ri, several insights emerge:

One. The “network minutes” on-trip opportunity cost has the form, m′iτ + z′iqi→j(τ), matching

our IC scheme (which further incorporates complications ignored here).

Two. As trip length τ →∞, the first component
[
λj→iR̃i+λi→jR̃j
λi→j+λj→i

]
τ dominates the opportunity

cost. This component does not depend on starting state i; the stationary distribution of a positive

recurrent CTMC does not depend on the starting state. This fact implies that we cannot always

construct incentive compatible prices, for any R1, R2: as τ → ∞, the trip’s opportunity cost does

2.5. NUMERICS: INCENTIVE COMPATIBILITY WITH ADDITIVE SURGE 27

not depend on the starting state i, and so the trip’s payments must be similar, w1(τ) ≈ w2(τ). When

all trips in the non-surge state are long, i.e., F1 is concentrated around large values, the earnings

rate in each state must be similar, R1 ≈ R2.

C encodes such constraints, as shown in Figure 2.3. As the mean of τ ∼ F1 goes to 0, then

λ12T1 −Q1 → 0 and so C → 0, and so the range of feasible R1

R2
expands. Similarly, λ2→1 also plays

an important role. When small, the surge state is long. Thus, a driver will receive many trips during

surge regardless of how long their last non-surge trip is—and so long trips during non-surge are no

longer constrained to be highly paid compared to short trips.

Continuation value opportunity cost It is not sufficient to consider just the opportunity cost

for the duration of the trip: the driver’s counter-factual earnings by rejecting the trip depends

on future trips accepted. Such counter-factual trips both (1) pay the driver according to their

starting state even after a world state transition, i.e., the difference between Ri and R̃i above;

and (2) potentially are still in progress past time t + τ , when the current trip ends. This second

complication is illustrated in Figure A.1, where a driver can extend the time spent on trips starting

in the surge state by rejecting short surge trips. The effect depends on the lengths of future potential

trips, i.e., Ti(σi), and state transitions during those trips, Qi(σi), and is incorporated in both C and

the pricing scheme.

2.4.4 Proof sketch of Theorem 2.4.1

The result is shown in the appendix by manipulating the derivative of the reward function with

respect to the policy σ. In particular, when the pricing function is of the given form with the

appropriate constants mi, zi, then any policy σ = {σ1, σ2} can be locally improved by adding more

trips to it, i.e., the overall reward is non-decreasing as the driver accepts more trips: R(w, σ′) ≥
R(w, σ),∀σ ⊆ σ′. This result follows from ∂

∂uR(w, σ) ≥ 0, for all u, σ, given the constraints, where

u is an upper endpoint of the policy in a state, σi = ∪k(`k, uk).

The key step is finding sufficient constraints for this derivative to be positive with a pricing

function of the given form, given any σi, as opposed to just σi = (0,∞). This difficulty emerges

because incentive compatibility is a global condition on the set function R(w, σ). In particular, we

need to express these constraints simply—e.g., as a function of just Ti((0,∞)), Qi((0,∞)), instead

of the values Ti(σi), Qi(σi),∀σi ⊆ R+. The C presented in the theorem statement results from such

a set of constraints on mi, zi.

2.5 Numerics: Incentive Compatibility with Additive Surge

We now analyze surge policies that reflect practice at ride-hailing platforms today. Non-surge pricing

is typically approximately multiplicative, i.e., w1(τ) = m1τ , where m1 is the base time (and distance)

28 CHAPTER 2. DRIVER SURGE PRICING

rate for a ride. We consider two types of affine surge pricing w2, which differ in their relationship

to w1 through a single parameter:

Multiplicative surge: w2(τ) = m2τ m2 ≥ m1

Additive surge: w2(τ) = m1τ + a2 a2 ≥ 0

Multiplicative surge uses a multiplier m2 larger than the base fare m1, and m2

m1
is reported on the

heat-map as in Figure 2.1a; additive surge uses the same base fare multiplier m1 but adds a factor

a2 that is reported on the heat-map as in Figure 2.1b. These functions are trivial to calculate, given

fixed primitives and target earnings rate R2 in the surge state.

Appendix Figure A.2 shows these types of pricing, compared to the incentive compatible pric-

ing function. Multiplicative surge has constant w2(τ)
τ and so under-pays short trips and over-pays

long-trips compared to IC pricing. Additive surge asymptotically (for large τ) pays the same as

multiplicative non-surge pricing, i.e. limτ→∞
w2(τ)
τ = limτ→∞

w1(τ)
τ = m1. As a result, it over-pays

short trips and under-pays long trips compared to IC surge pricing.

Uber has recently started a transition from multiplicative to additive surge. In this section,

we argue that the additive component is more important than the multiplicative component for

incentive compatibility in parameter regimes of interest.

2.5.1 Computing optimal driver policies

Theorem 2.3.2 establishes that multiplicative pricing (and, more generally, affine pricing) may not

be incentive compatible in general. However, we still wish to compare the various types of surge

pricing, and to analyze the regimes under which each is incentive compatible.

However, to do this comparison, one needs to calculate optimal driver policies with respect to

a pricing function. Recall that the optimal driver policy in each state σi is some subset of R+.

Finding such optimal subsets for general pricing functions w is intractable, and so Theorem 2.3.2 is

particularly important for computational reasons. It establishes that, for any affine pricing structure

in the surge state, there exists a driver optimal policy of the form (0, t1) ∪ (t2,∞), for some t1, t2.

We only need to find the values for these parameters that maximize the driver reward among sets of

this form, and the resulting policy is optimal; this search is tractable with grid search and numeric

integration. Note that the proposition does not establish uniqueness of the driver optimal policy;

we thus choose the policy that maximizes the fraction of trips accepted in our computations.

2.5.2 Results

We now study the regimes in which each surge mechanism is incentive compatible. The shaded

regions in Figure 2.4 correspond to areas where the surge pricing function is fully incentive compatible

2.5. NUMERICS: INCENTIVE COMPATIBILITY WITH ADDITIVE SURGE 29

1.0 1.5 2.0 2.5 3.0 3.5 4.0
R2

10

20

30

40

50

λ
2

Additive Surge Multiplicative Surge

(a) With R2, surge state earnings rate, and λ2, surge
state job arrival rate. R2 ∈ [1.1, 3] is common in
practice.

2 4 6 8 10
λ1→2

2

4

6

8

10

λ
2→

1

Additive Surge Multiplicative Surge

(b) With λ2→1, λ1→2, rates for world state changing.
λ2→1 � λ1→2 is common in practice.

Figure 2.4: Incentive compatibility for each type of surge. The shaded regions are where the respec-
tive scheme is incentive compatible in the surge state (σ2 = (0,∞) is optimal). When not varied,
λ1 = λ2 = 10, λ1→2 = 1, λ2→1 = 4, R2 = 3.33, R1 = 1, and trip lengths in both states are distributed
according to a Weibull distribution with shape 2 and mean 0.3. We assume every trip is accepted
in the non-surge state.

in the surge state (σ2 = (0,∞) is optimal). For example, when R2 = 2, λ2 = 30, additive surge is

incentive compatible, but multiplicative surge is not.

As illustrated in Appendix A.2 with data from the RideAustin marketplace, ride-hailing platforms

most often operate in the following parameter regimes: (1) surge is between 1.1 and 3 times more

valuable than non-surge; (2) surge is short-lived compared to non-surge periods (λ2→1 � λ1→2);

(3) and in a typical surge the driver receives several trip requests (λ2

λ2→1
> 1, but small) but only

completes one or two such trips (1
λ2→1

≈ mean trip length). Additive surge is incentive compati-

ble in much more of this regime than is multiplicative surge, supporting Uber’s recent shift from

multiplicative to additive surge.

We can also draw qualitative insights in terms of sensitivity to the primitives, similar in spirit to

effects in the form of C in Theorem 2.4.1. Figure 2.4a shows the sensitivity with respect to λ2 and

R2. As the arrival rate of jobs in the surge state, λ2, increases, it becomes optimal for the driver

to reject some trips: “cherry-picking” becomes easier, as the driver is likely to receive many more

trip requests before surge ends. Similarly, as surge becomes increasingly more valuable compared to

non-surge (R2 increases), the incentive to reject non-valuable trips in the surge state increases.

For additive surge, there is an interesting non-monotonicity with R2: when R2 � R1, the effect

above dominates, and long trips are rejected. When the surge state is moderately more valuable

30 CHAPTER 2. DRIVER SURGE PRICING

than non-surge, additive surge effectively balances the payments for different trip lengths and so

is incentive compatible. When the two states are nearly equally valuable, again the optimal driver

policy rejects long trips: our single-state model approximates the system, and so additive surge may

not be incentive compatible, cf. Theorem 2.3.1.

Figure 2.4b shows the effects of the relative lengths of surge and non-surge. Here, the two types

of surge are incentive compatible in opposing regimes. When λ2→1

λ1→2
is large, surge is comparatively

rare and short, and so short trips are naturally under-valued – accepting them decreases the time

spent in the surge state – and additive surge is incentive compatible. With long-lasting surge (small
λ2→1

λ1→2
), on the other hand, the world almost seems unchanging during surge, and so multiplicative

surge becomes incentive compatible. In modern ride-hailing platforms, the scenario with short, in-

frequent surge is more common (as illustrated with RideAustin data in Section A.2), and so additive

surge is preferable.

2.6 Empirical Comparison of Surge Mechanisms

We now study how the various surge mechanisms affect driver earnings in practice using publicly

available trips data from RideAustin, a nonprofit ride-hailing company based and operating in

Austin, Texas. We show that additive surge effectively balances the relative value of short and long

surged trips, in contrast to the multiplicative surge pricing scheme used in practice by the platform,

which comparatively undervalues short surged trips.

After reverse-engineering the functional form of the actual driver payments, we calculate both

status quo (with multiplicative surge) and simulated (with additive surge) driver earnings. For each

payment scheme, we estimate the driver’s value in receiving and accepting a given trip request, as

a function of the trip—where “value” is the increase (or decrease) in the driver’s earnings over the

next 90 minutes as a result of accepting the given request.

We note that this data is not the result of an experiment with additive surge, and thus our

analysis describes what changes would occur in driver earnings with the new pricing function if

driver behavior does not change.10 Nevertheless, the exercise provides useful evidence for what

would happen with such pricing functions in a real-world setting: such as when surge has more than

two levels and may not evolve in a Markovian manner, the driver is not paid for the time it takes

to drive to the rider, and where location plays a role. Furthermore, as the data observed is at the

completed trip level (i.e., requests which the driver accepted), results showing that the driver would

be better off accepting the same trip in the counter-factual world should directionally hold even as

driver behavior changes.

The rest of this section is organized as follows: in Section 2.6.1, we describe the data and

the context, and Section 2.6.2 contains our analysis and results. Appendix Section A.2 contains

10We are not concerned with rider behavior changing, as with decoupled pricing the rider pricing can remain the
same even as the driver payments change.

2.6. EMPIRICAL COMPARISON OF SURGE MECHANISMS 31

supporting details, and both the data and our full replication code is available online.11

2.6.1 Data setting and analysis description

This analysis is enabled by the rich dataset, spanning from June 2016 to April 2017, during which

RideAustin experienced tremendous growth and was one of the largest ride-hailing marketplaces

serving the area. The data is at the completed trip level. Komanduri et al. (2018) study the

same dataset and provide useful statistics about driver earnings, platform growth, and the service’s

relationship to public transportation.

We focus our analysis on approximately the last two months of this period, February 16, 2017 to

April 10, 2017, as (1) we can reliably reverse engineer the payment function used by the platform

during this period, and (2), the underlying marketplace was fairly stable during this period, except

for one week of high, atypical demand and surge, corresponding to the SXSW Music Festival held

in Austin. (Figure A.4a in the Appendix, e.g., shows the trips per day during this period). We

discard trips longer than 1 hour or shorter than 30 seconds and other trips with data errors; 6440

such trips were discarded. In total, we analyze 503,383 completed trips by 3811 drivers. (For the

analyses which aggregate multiple trips, such as driver earnings in a given time period, we discard

aggregations that include a discarded trip). The full pre-processing sequence is described in the

appendix.

Several dataset features make it attractive for our analysis when compared to other publicly

available ride-hailing datasets. Most importantly, there are consistent driver IDs attached to each

trip. Second, for each trip, there is a value for the total fare paid by the rider, along with terms

that contribute to this calculated fare: trip duration (in time and distance), payment rate (in time

and distance), surge factor, standard additive fare (Pickup), and trip class (Regular vs Luxury vs

SUV).12 These features allow us to track a driver’s trajectory and earnings over a day and the entire

year, reverse engineer how RideAustin calculates payments, and simulate additive surge payments.

Constructing payment functions

To simulate driver earnings with additive surge, we must first reverse engineer how the platform’s

actual total fare was calculated, a non-trivial task as the calculation changes over time in the dataset

and is not documented. (The last two months were chosen for analysis partially because the calcu-

lation remains constant during this period, and we are able to reliably reverse engineer it.) We find

11Data: https://data.world/ride-austin. Code link removed for anonymous peer review.
12Our results include trips from all trip classes, as a given driver may be cross-dispatched across trip classes.

https://data.world/ride-austin

32 CHAPTER 2. DRIVER SURGE PRICING

that this status quo fare is approximately:13

max(B + Pickup, MinFareForClass)× SurgeFactor.

B , (DistanceRate × Distance) + (TimeRate × Time) is the trip time and distance fare, only

counting when the rider is in the car (recall that current practice deviates from the theory in that

driving to the rider is typically unpaid). MinFareForClass is $4 for Regular trips and $10 otherwise.

SurgeFactor of 1 indicates no surge, comprising 70% of trips. It increments in multiples of 0.25, and

97% of surged trips have a factor of at most 3.

Then, we construct the following payment for each trip, to simulate how the driver would be

paid with additive surge, i.e., Additive surge with base fare:

max(B + Pickup, MinFareForClass) + [(SurgeFactor− 1)×ASurgeFactor]

ASurgeFactor are surge factor dependent constants that are set such that this alternative payment

function spends the same amount of money overall for each surge factor as does the status quo fare.

In other words, the alternative payment does not change the mean trip payment conditional on the

surge factor, but does change how money is allocated to various trips within that surge. This choice

reflects our theory in assuming an exogenous Ri, and removes any degrees of freedom in setting

ASurgeFactor. If instead we used a single constant across surge factors, Additive surge with base fare

may pay different amounts on average for the same surge factor than does the status quo fare.

Matching open drivers

We are interested in the value of a trip request to a driver; to calculate this value, as described

below, we first need to match the driver of each given completed trip to a nearby driver who is also

open to receive a trip request at the time of the request. This matched driver’s earnings then serve

as a counter-factual for the given driver’s earnings had the driver rejected the request.

In the dataset, we observe trip start and end times and locations but not driver locations when

they are not on a trip or even whether they still have their app open. We also observe the time at

which a driver received a given trip request but not their location at this time, due to what seems

like a data export bug. This data does not allow us to simply query for other open drivers nearby

who could have (but did not) receive a given trip request.

Instead, we estimate matches as follows, leveraging recent, nearby completed trips. First, we de-

fine a “matching distance” between pairs of (date-time, location) tuples. Events with small matching

distances occur nearby and at similar times. The exact function with how time and geographic dis-

tance are weighted is specified in the appendix. Then, for each given trip we find a driver who

13The payment includes a multiplier of 1.01 and an additive value of 2.02. From publicly available information, we
assume that the platform takes a fixed commission independent of trip length, and so the driver receies everything
but the $2.02 (RideAustin, 2019). On average, this reversed engineered fare differs from total fare by less than 1 cent.

2.6. EMPIRICAL COMPARISON OF SURGE MECHANISMS 33

recently completed a trip nearby and has yet to start another trip. For the given trip, we use its

start location (where the rider was), and the dispatch time (when the rider’s request was accepted).

Next, we calculate the matching distance between this tuple, and each recent completed trips’ des-

tination time and location. Finally, we choose the closest match, filtering out drivers who are the

same as the given trip’s driver, who have started another trip before the given trip’s start time, or

who ended their session (did not start any trip in the next hour).

In the appendix, we provide results from a different but complementary matching method, as

well as additional information about the matches and their quality.

Calculating the value of a trip to a driver

We now measure how valuable a trip is to a driver, through a notion we call trip indifference: given

a specific trip request length τ , in expectation the driver is at least as well off accepting the request

as rejecting it, assuming some future behavior. Given a trip and a matched driver as described in

Section 2.6.1, we estimate this measure as follows: we compare the two drivers’ future earnings over

the 90 minutes after the accepted trip begins—the higher the given driver’s earnings over that of the

matched driver, the more valuable the given trip request. If there is no difference, i.e., the matched

driver in expectation earns the same amount, then the given driver should be “indifferent” between

accepting or rejecting the request.14

Suppose trips are mis-priced and do not fully incorporate the drivers’ temporal externalities.

Then, trips of different lengths τ would vary in the value delivered to drivers. We would expect

to see the average earnings differential, conditional on trip length, to vary as a function of the trip

length; i.e., receiving a long trip during surge may be more valuable to a driver than is receiving a

short trip.

We note that bias in the matching process may shift the expected earnings difference, but should

not differentially affect the distributions of earnings differences induced by each payment function,

as the same matches are used for each payment function. As robustness checks, in the appendix we

vary both the matching function and the length of time over which we calculate the two drivers’

earnings.

2.6.2 Analysis and results: value of short and long trips

Figure 2.5 shows the difference in value between short (below the median trip length) and long

(above the median) trips, as it changes with surge. As expected, it is more beneficial for drivers to

receive trips with higher surge factors. However, with the platform’s existing multiplicative surge

payment function, only long trips become more valuable as the surge factor increases; even at high

14Trip indifference is related to our theoretical notion of incentive compatibility as follows. Suppose the given driver
accepts all future requests over the next 90 minutes. Then, if a payment scheme is incentive compatible, the earnings
difference between the given driver who accepts trip τ and the matched driver will be at least 0 for all τ .

34 CHAPTER 2. DRIVER SURGE PRICING

1 2 3 4 5

Surge factor

−10

0

10

20

30

40

50

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Status quo

1 2 3 4 5

Surge Factor

Payment = Additive surge with base fare

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure 2.5: Difference in earnings over the next 90 minutes for the driver of a given accepted trip
request, and a matched driver who also was open nearby at the time of the request, conditional on
surge factor (rounded to nearest 0.5) and length of trip. Error bars are 95% bootstrapped confidence
intervals.

surge factors, drivers would have often had higher earnings had they rejected short trip requests.

With additive surge, in contrast, trips of all lengths become more beneficial on average as surge

increases. During high surge times, additive surge increases the value of short trips by about $15

per hour.

In the appendix, we further simulate a world with the RideAustin data, but with surge being

common and extremely valuable (we “flip” the surge factor). This analysis illustrates that our other

insights also extend to practice, with there being settings where non-surge periods cannot be made

incentive compatible, and where neither multiplicative nor additive surge correctly balance the value

of short and long trips. We also show how hourly driver earnings during a single “shift” change with

additive and multiplicative surge, and how the former leads to more stable earnings. Overall, this

analysis suggests the substantial difference that changing the structure of payments can make, and

the comparative benefits of additive surge in practice under common regimes in ride-hailing.

2.7 Conclusion

In this work, we studied the problem of designing incentive compatible mechanisms for ride-hailing

marketplaces. We presented a dynamic model to capture essential features of these environments.

Even-though our model is simple and stylized, it highlights how driver incentives and subsequently

dynamic pricing strategies would change in the presence of stochasticity. Our numeric and empirical

analysis suggests the importance of such components in practice. We hope our work inspires other

researchers in this area to incorporate such uncertainty in their models, as it is one of the biggest

challenges faced in practice.

2.7. CONCLUSION 35

An important direction for extending our work is studying matching and pricing polices jointly,

i.e., how to best match open drivers to riders in the presence of such effects, cf. (Ashlagi et al.,

2018; Banerjee et al., 2017a,b, 2018; Feng et al., 2017; Hu and Zhou, 2018; Kanoria and Qian, 2019;

Korolko et al., 2018; Özkan, 2018; Özkan and Ward, 2016; Zhang et al., 2017). In this work, we look

at incentive compatible pricing. The platform, in addition to pricing, can use matching policies to

align incentives.

Part II

Designing Rating Systems in

Online Marketplaces

36

Chapter 3

Designing Informative Rating

Systems: Evidence from an Online

Labor Market

3.1 Introduction

Rating systems are an integral part of modern online markets. Marketplaces for products (Amazon

and eBay), ridesharing (Lyft and Uber), housing (Airbnb), and freelancing all employ rating systems

to vet platform participants. Buyers rely on ratings to choose which products to buy and how much

to pay, and platforms use ratings to identify both poor and great performers, and in ranking search

results. Ratings are consequential: a high score typically directly translates to more visibility and

sales. Indeed, without effective mechanisms to collect feedback after matches, online markets would

be “flying blind” in reducing search frictions between buyers and sellers.

Despite their central importance, extensive prior work suggests the standard rating systems of

many online platforms are not sufficiently informative, i.e., ratings do not sufficiently discriminate

between high and low quality sellers. A major causal factor in this lack of informativeness is rating

This chapter is joint with Ramesh Johari. Published as an extended abstract at the ACM Conference on Economics
and Computation (EC), in 2020 (Garg and Johari, 2020). A journal version is in submission (Garg and Johari, 2019b).
This work benefited from substantial implementation and experimental efforts led by Cary Luu. We also thank
Michael Bernstein, Hayden Brown, Ashish Goel, John Horton, Shane Kinder, and participants of the Market Design
workshop at EC’18. This work was funded in part by the Stanford Cyber Initiative, the National Science Foundation
Graduate Research Fellowship under grant DGE-114747, and the National Science Foundation under grants 1544548
and 1839229.

37

38 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

inflation, where most participants predominantly receive high ratings. Heavily skewed rating distri-

butions lead to systems in which noise dominates, and as a result buyers are challenged to extract

meaningful signal from available rating scores.

Several empirical studies have established the prevalence of rating inflation. On eBay, more

than 90% of sellers studied between 2011 and 2014 had a rating of at least 98% positive, and more

transactions result in a dispute than in negative feedback (Nosko and Tadelis, 2015). On the online

freelancing platform oDesk, average ratings rose by one star over seven years (Filippas et al., 2019).

On Uber, an average rating of 4.6 out of 5 stars puts a driver at risk of deactivation (Cook, 2015).

On Airbnb, almost 95% of hosts have an average rating of 4.5-5 out of 5 stars (Zervas et al., 2015).

On Amazon, ratings tend to be bimodal with a big peak near the most positive score and then a

(much) smaller one near the most negative one (Hu et al., 2009). Numerous other works report

similar findings; Tadelis (2016) provides a thorough review of the literature.

The empirical literature concludes that inflated ratings are less informative about quality dif-

ferences among participants. For example, Filippas et al. (2019) notes that the increase in average

ratings at oDesk could not be explained solely by higher seller performance, indicating that rating

informativeness dropped over time as ratings inflated. As a consequence of inflation, negative rat-

ings carry outsized influence, because they are so rare; for example, Cabral and Hortacsu (2010) find

that on eBay a seller’s first negative feedback reduces her weekly sales growth rate from 5% down

to −8%.

In this paper we investigate whether platforms can improve the quality of information obtained by

changing the design of the rating scale that they employ. In particular, we ask: by carefully choosing

both the meaning and importance of different answer choices in a rating scale, can platforms elicit

higher quality information from their raters, i.e., such that the platform recovers the true relative

qualities of sellers with fewer ratings? Our main contributions are as follows.

Reducing rating inflation via positive-skewed verbal scales. First, we establish evidence

that a careful choice of the rating scale can in fact strongly reduce rating inflation. In particular, we

analyze a test in the live rating system of a large online labor market. In this test, the platform asks

buyers to choose from a list of phrases (e.g., Best Freelancer I’ve Hired) or adjectives (e.g., Fantastic!).

Our results show that platforms can effectively combat rating inflation by using positive-skewed

verbal scales: the rating distribution obtained from such scales is substantially more dispersed than

under the “standard” star rating scale. Most starkly, in our experiment, 80.6% of freelancers received

the best possible numeric (i.e., star) rating, but less than 35.8% were rated with the highest-ranked

verbal phrase across non-numeric treatment cells. We further provide evidence that inflation over

time can be countered: ratings on our additional question did not inflate over the test time period,

in contrast to an inflation of about 0.3 points (on a five star scale) over a similar time period after

the introduction of a new numeric rating system on the same platform, cf. Filippas et al. (2019). Our

findings suggest that in platforms today, the norm is that any acceptable experience is given the top

3.1. INTRODUCTION 39

numeric rating, with the rest of the scale reserved for various degrees of unacceptable experiences.

Positive-skewed verbal scales yields more informative ratings. Second, we establish

evidence that the verbal scales we tested yield more informative ratings. In particular, we show

ratings given with the positive-skewed verbal adjective scales are more predictive of whether a

freelancer will be re-hired by the client in the near-future: clients are up to 30.8% more likely to

rehire the freelancer during the test period after giving them a top rating from a positive-skewed

scale than after giving them the top numeric score. In addition, for each freelancer we estimate

their quality through the experimental data itself (carefully handling endogeneity concerns) and

then produce an estimated joint distribution of freelancer quality and the ratings they receive with

a given ratings scale. The distributions qualitatively reveal that positive-skewed verbal scales are

much more informative about freelancer quality than are numeric scales.

A principled approach to comparing rating system designs. Third, we provide a princi-

pled approach to comparison of different rating system designs. In particular, we develop a metric

on the joint distribution of seller quality and resulting ratings that directly reflects the typical goal

of a rating system: to learn about sellers as quickly as possible. We develop a mathematical frame-

work where the performance of a rating system is measured through the large deviations rate of

convergence of the seller ranking via observed score to the true underlying seller quality ranking.

This rate is the exponent in the exponential decay of the Kendall’s τ distance between the estimated

and true seller rankings over time.

We develop a stylized model for rating system design within which we calculate these convergence

rates. We define a fictitious “marketplace” in which sellers accumulate ratings over time, with match

rates proportional to their quality. Buyers rate sellers using a multi-level rating scale, i.e., buyers

are asked to answer a multiple choice question (e.g., 1-5 stars, or a set of adjectives describing the

interaction) when rating the seller. The platform can choose amongst several rating scale options

that differ in their levels (e.g., adjectives); these scale options induce different buyer rating behavior.

The platform can also set the scores to assign to these adjectives (e.g., the seller might receive a “5”

if the buyer selects the best adjective, and a “3.7” if they select the second best adjective). Within

this marketplace, different design choices (scale choices and scores) differ in the rates of convergence

to the true quality ranking they induce, with higher rates reflecting better designs.

We show that given behavioral data of how buyers have rated sellers under various rating system

designs in our test, this framework can be effectively employed to compare and select among the

designs. In particular, we apply this framework to the data from our online labor market test. This

process reveals the quantitative gains in convergence rate obtained by verbal rating scales over the

naive numeric rating system. Interestingly, our framework also reveals that the first order effect on

the rate of convergence comes from the choice of verbal descriptions on the scale; optimizing the

choice of scores yields a lower order improvement in performance.

Taken together, our results suggest that platforms have much to gain by optimizing the meaning

40 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

of the levels in their rating systems, and in particular using positive-skewed verbal rating scales

instead of numeric scales. Our managerial insight is that ratings on online platforms are not doomed

to be highly inflated; rating behavior is responsive to how the system is designed, and good rating

behavior can be both quantified and obtained through a structured design methodology. Our entire

approach of experimenting with various rating scales and then choosing amongst them in a principled

manner also provides a framework for doing the same in other ratings contexts, including where other

behavioral challenges (such as bias or deflation) may be present. For example, in Section B.2 in the

Appendix, we repeat our experiment, design approach, and analysis in a synthetic rating setting on

Amazon Mechanical Turk where we have access to expert ratings on item quality.

The remainder of the chapter is organized as follows. Section 3.2 contains related work. In

Section 3.3, we describe the labor market test, with results presented in Section 3.4. In Section 3.5

we describe a model and approach to evaluating and designing a multi-level rating scale. Finally,

in Section 3.5.3, we apply our design approach to the data from our labor market experiment.

The Appendix contains additional information and robustness analyses for our labor market test,

a second application of our design approach via a synthetic experiment on Mechanical Turk, and

proofs.

3.2 Related literature

Challenges in designing effective online rating systems are well-documented. To help explain the

empirical inflation findings discussed above, one branch of the literature focuses on how ratings are

given after bad experiences, and in particular conditions under which buyers either don’t leave a

review at all or leave a positive review. On Airbnb, for example, Fradkin et al. (2018) find that induc-

ing more reviews resulted in more negative reviews, suggesting that those with negative experiences

are less likely to normally submit a review. Though historically this inflation has been thought of

as a strategic response to potential retaliation, recent evidence indicates that social pressure also

plays a role. For example, sellers incentivize reviews (of any kind) by offering discounts, potentially

creating an implicit social obligation for reviewers to reciprocate with a positive review (Cabral and

Li, 2015; Li and Xiao, 2014). Such effects, along with outright fraud and sellers asking for higher

ratings, contribute to rating inflation.

3.2.1 Platform measures to counter or encourage inflation

Platforms are aware of the inflation problem and have invested in fixing it. Most existing solutions

try to decrease retaliatory pressure from sellers or to encourage more buyers to submit reviews. In

2007, eBay implemented one-sided feedback (i.e., only buyers rating sellers), with anonymous ratings

presented only in aggregate; the platform later eliminated negative buyer ratings altogether (Bolton

et al., 2013). Through a test with private feedback, oDesk reports that such feedback predicts both

3.2. RELATED LITERATURE 41

future private and public feedback better than does public feedback, and there is evidence that

buyers utilize private ratings more than they do public ratings (Filippas et al., 2019).1 Other work

has attempted to align buyer incentives with providing informative reviews (Gaikwad et al., 2016),

but the approach has not yet been widely adopted. Despite such fixes, the problem of inflation

largely remains on online platforms, consistent with the hypothesis that norms have shifted so that

even average experiences are given the top numeric value.

This literature suggests that many initially effective ideas may not have a first order effect in

increasing the informativeness of ratings, especially in the long-term: rating behavior on online

platforms is not static. Filippas et al. (2019) show that inflation happens over time: on the same

online labor market as in our test, average public ratings over a span of nine years went from below

4 stars to about 4.8 stars. This view is consistent with the “disequilibrium” view of rating system

design described by Nosko and Tadelis (2015).

3.2.2 Survey design and rating inflation in other contexts

Rating inflation and the question of rating system design are also prevalent in other contexts. For

example, grade inflation in education is an oft-recognized issue (Johnson, 2006). Proposed solutions

include include forcing educators to deflate grades (either by assigning quotas to each grade or by

eliciting rankings) or standardizing grades after the fact (Blum, 2017; Lackey and Lackey, 2006).

Similar methods are used to evaluate employees (Shaout and Yousif, 2014) and athletes. In baseball,

for example, scouts rate athletes on a numeric scale that spans from 20 to 80 (Gines, 2017); however,

scouts differ in how they evaluate talent or otherwise have heterogeneous biases, and teams may use

sophisticated systems to calibrate the information provided by each scout (Reiter, 2018). On online

platforms, in contrast, it may not be desirable to impose ratings quotas on buyers or feasible to

assess the rating ability of individual buyers (though these are interesting avenues for future work).

An alternate approach to counter grade inflation is adding and labeling rating levels (e.g., plus-

minus grading, or providing suggested mappings from relative ranking to grade) in order to behav-

iorally induce more dispersed grade distributions from educators (Blum, 2017; Lackey and Lackey,

2006). This solution is similar to the well-studied idea of using labels for scales in survey responses,

in which the specific design of rating scales – including the specific words, number of words, and their

positive-negative balance – is known to affect responses (Hicks et al., 2000; Klockars and Yamagishi,

1988; Krosnick, 1999; Parasuraman et al., 2006). In such solutions, the raters are not forced or even

explicitly asked to answer in a certain manner; rather, the question and answer choices are presented

in a way such that raters naturally behave as the survey designer wishes them to.

Our behavioral results are consistent with this latter literature, despite the presence of incentive

issues as discussed above: scale design can have a first order effect on the quality of responses in real

1“Public ratings” are shown publicly, non-anonymized, e.g., “A rated B 5 stars.” “Private ratings” are either shown
as a summary statistic, e.g., “B averages 4.6 stars”, or not shown at all and used only internally by the platform.

42 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

rating systems. Although this finding aligns with the survey design literature, as discussed above our

study is preceded by a long line of rating systems literature in which substantive changes (making

ratings private, trying to prevent retaliation, or UI changes) do not in practice lead to sufficiently

informative rating systems. Given the potential costs for giving negative ratings posited by previous

work, it is not clear a priori that any change will induce raters to do so; our work provides one path

forward.

Beyond this behavioral insight, we provide a theoretical framework that a survey designer in any

context can use to pinpoint the most informative design for their setting in a principled manner.

For example, in the Appendix we apply our approach to a setting more similar to standard survey

design and crowd-sourcing, and it yields a non-trivial rating system design that outperforms others.

3.2.3 Theoretical analyses of ratings

Recent literature has attempted to explain rating behavior, and inflation in particular, through a

variety of models (Cabral and Hortacsu, 2010; Filippas et al., 2019; Fradkin et al., 2018; Immorlica

et al., 2010). Much of this work seeks to understand how buyer incentives may result in an equilib-

rium in which they provide with dishonest ratings, or how sellers may be incentivized to accumulate

high ratings and then give low effort. For example, Filippas et al. (2019) posit that high ratings are

unavoidable when sellers are affected by negative ratings, as buyers are incentivized to incorrectly

give positive ratings even after negative experiences.

Several recent works also study the speed of learning in rating systems and other similar con-

texts (Acemoglu et al., 2017; Che and Horner, 2015; Ifrach et al., 2017; Johari et al., 2017; Papanas-

tasiou et al., 2017). In these works, the platform influences which matches occur through its design,

and this affects the learning rates. In contrast, we take the matches as given and show how the

platform can meaningfully design what it learns from each match. Finally, in Chapter 4, we consider

the optimal design of binary rating systems, for which far more theoretical structure exists.

3.3 Online labor market experiment description

Our work focuses on whether we can improve the design of the feedback systems used in online

platforms. As we have noted, the literature suggests that despite substantial effort across a variety

of platforms, rating behavior has not changed for the better over time: average ratings on platforms

tend to be extremely high or “inflated” (see discussion in Section 3.2). A significant consequence

of this inflation is that current ratings systems and their resulting distribution of ratings do not

provide information that can effectively and efficiently differentiate high quality participants from

low quality participants.

In this section, we propose a simple but under-explored innovation in the design of a rating

system: using positive-skewed verbal phrases in the rating scale. We study the effect of such a

3.3. ONLINE LABOR MARKET EXPERIMENT DESCRIPTION 43

change through the results of a randomized controlled trial on the rating system of a large online

labor market. In this test, new ratings questions were introduced in a feedback form clients submit

upon finishing a job with a freelancer.

The section is structured as follows. In Section 3.3.1, we further discuss our motivation and

hypotheses. In Section 3.3.2, we briefly describe the online labor market. Section 3.3.3 contains our

method and the treatment conditions. We discuss the results in Section 3.4; as we show there, our

results demonstrate that our proposed design changes successfully curb rating inflation and lead to

substantially more informative ratings.

3.3.1 Motivation and hypothesis

We aim to design rating scales for online platforms that lead to more informative ratings. Motivated

in part by the emergence of the rating norms discussed in the introduction, where 5 stars is routinely

considered “average,” we are interested in evaluating the effectiveness of changes that can counter

this norm: in particular, we consider rating scales where the answer choices are positive-skewed, with

specific descriptions attached to each rating.

Our hypothesis is that such positive-skewed scales lead to less “inflated” ratings than standard,

numeric rating scales, and as a result, produce more informative ratings. (By “inflated”, we mean

ratings where a large majority of the rating distribution is on the highest rating score).

This hypothesis is motivated by the idea that raters feel a cost if they are dishonest in their

ratings, and that this cost is an increasing function in how dishonest she perceives herself to be.

Crucially, this quantity would vary both with experience quality and the rating system design.

With standard numeric rating systems and today’s norms, a rater arguably does not consider herself

dishonest for rating mediocre experiences 5/5, because that is what 5 stars has come to mean. On

the other hand, suppose a platform provides explicit guidance on what ratings mean (e.g., “5 stars

means best experience you’ve had”); raters would thus face a higher cost of dishonesty for giving

low quality sellers a high ratings. This hypothesis is consistent with the self-concept maintenance

literature, where people are understood to be more likely to be dishonest when they can convince

themselves that they are acting honestly (Mazar et al., 2008). Models with such costs have been

considered in, e.g., Filippas et al. (2019) and Fradkin et al. (2018).

Finally, note that while our test design allows us to measure the effects of other design changes,

we did not hypothesize any other specific effects (direction or magnitude) a priori, except for the

benefits of positive-skewed rating scales. These alternate design changes let us compare the relative

benefits of possible solutions to the rating inflation problem.

3.3.2 Empirical context

The test ran on a large, online labor market. In this market, clients seek the services of freelancers

across a variety of categories (e.g., software development, graphic design, and translation). Clients

44 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

may choose to contract with a freelancer for a job based on work history, prior ratings, the freelancer’s

proposal, and potentially an initial conversation. A client-freelancer pair may work on multiple jobs

together during their time on the platform.

At the end of each job, the client is asked to fill out a feedback form in which they rate the

freelancer’s work through a series of multiple choice and free-form questions. This labor market has

both private and public ratings, and private ratings are aggregated and made available to potential

future clients as part of a freelancer’s public score. Both private and public ratings are high on the

platform: even the average private feedback score is over 8.5/10. See Filippas et al. (2019), which

analyzes ratings over time on the same labor market, for an in-depth description of the status-quo

rating system and its performance.

3.3.3 Method

We now describe our test method. The authors were involved in test design and analysis of

anonymized data, but not implementation or deployment.

The test added a question to the feedback form given to clients after they close a job. This

question appeared with the current private rating questions and was marked optional. All clients

were still asked the existing private rating questions, including rating the freelancer on a numeric

0− 10 scale. The answer choices were displayed vertically after the question.

The test ran over a 90 day period in Summer 2018, with a pilot in January 2018 over 5 days.

We report the set-up and results of the long test; pilot results are nearly identical.

Treatment conditions

There were six treatment conditions that included an additional question on the feedback form. The

question phrasing and answer choices differed between the treatment conditions. See Table 3.1 for

a detailed list of the treatment conditions. There were four different types of answer choices: (1)

comparing against a client’s expectations (Expectation); (2) descriptive adjectives (Adjectives); (3)

comparing against the average freelancer the client has hired, as well as two variants (Average; Av-

erage, not affect score; Average, randomized); and (4) a numeric scale with no descriptions attached

to the ratings (Numeric).

The non-numeric treatments describe possible ways to design multiple choice rating systems that

add more specificity to the rating scale. The choices themselves are skewed toward the positive end:

each scale has two “negative” choices, one “neutral” choice, and 3 “positive” choices, in increasing

levels of effusiveness. This imbalance was chosen so that (a) clients could give “positive” feedback

to most freelancers while still allowing the platform to disambiguate the very best from others, and

(b) to emphasize that the best ratings should be reserved for the very best freelancers.

The Numeric treatment, giving freelancers the option of giving 0 − 5 stars, helps disambiguate

between novelty effects of introducing new questions and the idiosyncratic effects of the question

3.3. ONLINE LABOR MARKET EXPERIMENT DESCRIPTION 45

Treatment Additional Question Answer choices

Expectation How did this freelancer compare
to your expectations?

Much worse than I expected, Worse than I expected,
About what I expected, Better than I expected, Far
better than I expected, Beyond what I could have ex-
pected

Adjectives How would you rate this free-
lancer overall?

Terrible, Mediocre, Good, Great, Phenomenal, Best
possible freelancer!

Average How does this freelancer com-
pare to others you have hired?

Worst Freelancer I’ve Hired, Below Average, Average,
Above Average, Well Above Average, Best Freelancer
I’ve Hired

Average,
not affect
score

How does this freelancer com-
pare to others you have hired?
(This will not impact the free-
lancer’s score)

Same as Average group

Average,
random-
ized

How does this freelancer com-
pare to others you have hired?

Same as Average group, but in random order

Numeric How would you rate this free-
lancer overall?

0, 1, 2, 3, 4, 5

Table 3.1: Treatments groups for labor market test

itself. As in the other treatments, this question is asked in addition to the the existing rating

questions on the site, which include a 0 − 10 overall rating question. Furthermore, the question

phrasing is identical in the Adjectives and Numeric treatments; only the answer choices differ. This

design thus teases out the different effects of the type of question itself and the answer choices.

We include two additional variants as follows: (a) a variant with additional text emphasizing

that the answer will not impact the freelancer’s publicly displayed rating (Average, not affect score),

and (b) a variant where we randomize the order of the answer choices (Average, randomized). The

first variant tests the additional informational gain from clients knowing for certain that a low rating

will not affect the freelancer. The second variant helps assess the propensity of clients to not read

all the answer choices before responding.

In addition to the six treatments, a Control condition was included, in which no additional

question is asked (replicating the status quo feedback form).

Allocation to treatment groups

Allocation was done at the client level when they first closed a job and landed on the feedback form

after the start of the test. Clients who had closed less than two jobs in the past were excluded,

as several of the treatment conditions ask clients to compare the freelancer to past experiences.

Each treatment condition was allocated 15% of the clients, and the remaining 10% of clients were

allocated to Control. After being allocated to a treatment group, a given client was assigned the

same treatment for the duration of the test and was thus shown the same additional question for any

further jobs she may have closed. (During the pilot in January, 2018, 40% of clients were allocated

46 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

Assigned Submissions Analyzed
Condition Clients Clients Jobs Clients Jobs Mean treatment response

Control 7576 7179 23554 6880 21850 -
Expectation 11271 10073 28880 9718 27156 3.34
Adjectives 11101 9966 28413 9616 26370 3.65
Average 11375 10135 28372 9807 26605 3.76
Average, not affect score 11500 10295 28882 9944 27536 3.78
Average, randomized 11466 10258 28663 9895 26978 3.46
Numeric 11303 10120 32153 9802 27677 4.59

Table 3.2: Number of clients and jobs in each cell, and mean treatment response

to Control and 10% to each treatment condition.)

Due to a bug in the allocation code during the test, 1, 086 out of the 66, 755 clients who submitted

feedback were assigned to different treatment conditions on different closed jobs. We disregard

all such clients in our analysis to eliminate the possibility of contamination between treatment

cells. To confirm experimental validity, we show in the Appendix that otherwise the randomization

was effective: the distribution of clients in different cells are essentially identical on all observed

covariates. This bug does bias the client population in our data in one way, however: clients who

closed more jobs in the test period were more likely to experience the bug, and thus to be incorrectly

assigned to multiple treatment cells. As a consequence, the client population on which we carry out

our analysis skews slightly away from the highest volume clients on the platform.

Number of responses and data preprocessing

75, 592 unique clients landed on the feedback page, and 66, 755 clients submitted feedback for at least

one job. We remove the clients mistakenly assigned to multiple treatment cells (the bug described

above), as well as seven clients who were correctly assigned but who closed more than 200 jobs

during the test period. Table 3.2 contains, for each treatment cell, the numbers of clients assigned,

clients who submitted a job, and clients and jobs in our dataset after the pre-processing.

3.4 Labor market test results

In this section we provide results that demonstrate that the positive-skewed verbal scales reduced

inflation and produced more informative ratings. In Section 3.4.1 we show the verbal rating scales

result in deflated ratings compared to the numeric scale; we report simple marginal distributions of

the rating choices made by clients in different treatment cells, both overall and across time through-

out the experiment. Then in Section 3.4.2 we show that such verbal scales are more informative than

the numeric scale: the rating choices made by clients in the verbal treatment cells better correspond

to exogenous signals of a given freelancers quality, in two ways. First, we show that the verbal scales

are more predictive of whether clients tend to rehire a freelancer. Second, we show that the verbal

3.4. LABOR MARKET TEST RESULTS 47

0 1 2 3 4 5

Answer Choice

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

(a) Rating distributions over entire time period

0 20 40 60 80

Days since launch

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

M
ea
n
R
at
in
g

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

(b) Mean ratings over time in a 7 day sliding window

Figure 3.1: Labor market test marginal rating distributions. Error bars are 95% boot-strapped
confidence intervals, where the bootstrapped sampling is done at the client level.

scales yield ratings that are more strongly correlated with the average rating a freelancer receives by

distinct clients across treatment cells; this latter quantity serves as an empirical proxy for freelancer

“quality”. The resulting approximate joint distributions of freelancer quality and ratings received

motivate our model in the next section, where we develop a measure to compare rating scales by

the joint distributions they induce.

3.4.1 Verbal rating scales counter inflation

We start our analysis of the results by looking at the marginal rating distributions in each treatment,

i.e., how many freelancers received each possible rating in each treatment cell. These distributions

provide evidence that the non-numeric scales provide more dispersed and deflated ratings. Further-

more, we find that the verbal rating scales are resistant to inflation throughout the course of the

experiment; this surprising finding stands in contrast to prior work on rating inflation over time.

Snapshot analysis of ratings

Figure 3.1a shows the marginal rating distributions for each treatment group, and Table 3.2 contains

the mean treatment response in each group, for the entire experiment period. There is a large and

significant difference between the rating distribution from the numeric scale and each of the other

treatment groups. Each treatment cell is different from each of the others at p < 10−100 using the

Kolmogorov-Smirnov two-sample test, except for the Average and Average, not affect score cells,

where p > 0.1. While the Numeric treatment ratings follow the J-curve pattern usually seen in

ratings, the other treatments are far more evenly distributed as desired. Most starkly, 80.6% of

ratings on the Numeric scale are 5/5, while at most 35.8% of responses on any other scale received

48 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

the highest possible rating.

The substantial effect size of the difference between the Numeric condition and the other treat-

ments confirms our hypothesis that specific and positive-skewed scales are an effective way to counter

inflation: the answer choices presented to the rater are a first-order determinant of rating behavior.

The other changes (emphasizing that the freelancer would not be affected, and randomizing the

choices) have comparatively small effects.

Additional analyses are in the Appendix. In particular, our results there demonstrate that the

findings reported in this section remain essentially identical even if we use other approaches to

the analysis; for example, if we sample only one job per client, if we include all valid clients (i.e.,

including those with more than 200 jobs submitted), or if we even include the invalid incorrectly

allocated clients.

Temporal analysis of ratings

The above analysis provides a snapshot view of what happens when a new question is added to

the rating form. Some of the rating dispersion may be a novelty effect that decreases over time.

As Filippas et al. (2019) emphasize, a substantial component of rating inflation in online platforms

happens over time, on the order of months or even years. Here, we analyze whether ratings on the

new questions inflated in the time period of the test.

We find that the rating scales do not inflate substantially. Figure 3.1b shows the average rating

per treatment group over the 90 days after the launch of the test, in a sliding window of 7 days.

There is no discernible inflation over time. It is instructive to compare the (lack of) inflationary trend

to the inflation after the launch of a new numeric scale on the same platform in 2007, as reported

by Filippas et al. (2019): average ratings inflated from about 3.8 stars to about 4.1 stars in the first

three months after the system launched. (Note that introducing a new Numeric question in 2018

yields immediately inflated responses, suggesting that current platform users have been conditioned

to the norm of inflated ratings.)

One concern with drawing conclusions from the preceding analysis over time is that there may

not be enough clients who actually submit multiple jobs during the test period, and so novelty

effects may still predominate when looking at overall averages. To study this concern, we analyze

the ratings given by the clients who submitted at least 10 ratings each. We then run a regression for

treatment response, with a covariate indicating how many previous jobs the client had submitted

during the test period. Appendix Section B.1.4 has the associated table and discussion. For such

high-volume clients, inflation exists but is slow: ratings may be inflated by a full point after a client

has given 100 ratings.

Positively, this finding suggests that as long as new clients continue to enter the platform, ratings

should remain deflated over a long time horizon. Indeed, given that existing norms are strongly

biased towards inflationary ratings (as evidenced by clients’ responses to the Numeric question), it

3.4. LABOR MARKET TEST RESULTS 49

is quite valuable to see no evidence of inflation in the verbal treatment groups within a three month

period. Of course, in principle it remains possible that over a timescale much longer than that of this

test, norms would shift again towards inflated ratings. A longer-term longitudinal analysis of this

type of inflationary behavior remains an important direction for future work in this area, though of

course data collection over such a long time horizon is a significant obstacle.

3.4.2 Verbal rating scales yield more informative ratings

The analysis above establishes that buyers behave substantially differently with non-numeric rating

scales than they do with the numeric scale, and in particular that such scales produce deflated

ratings. In this section, we establish that this change is beneficial to the platform in terms of

learning about freelancers: that higher “quality” freelancers indeed receive better ratings on average

with the verbal scales, where “quality” is exogenously defined based on signals other than ratings

on the given rating scale of interest.

To do this analysis, however, one needs such an exogenous signal on latent freelancer quality;

such a strong signal is precisely what is missing on many online platforms with inflated rating

systems. In fact, this lack of a signal, especially for new participants on the platform, is the primary

motivation for our work. We provide two approaches to overcome this gap and show that indeed the

verbal rating scales substantially provide more information to the platform. Our second approach,

in particular, provides estimates for the joint distribution of freelancer quality and the ratings they

receive in each scale.

Predicting freelancer rehires

First, we observe that on this labor market, clients often rehire the same freelancers for jobs in the

future. Consistent with the literature, we assume that a client with a more positive experience with

a freelancer is more likely to return to the platform and rehire the freelancer (Nosko and Tadelis,

2015). We thus analyze whether the verbal rating scores provide more predictive power on whether

a freelancer will be rehired. (This measure is not perfect, as there are others reasons that a rehire

may not occur, including that the freelancer does not wish to work with the client. However, the

ratings in our test are private, and so could not have directly exerted this influenced).

For each client-freelancer pair that completed a job during the experiment period, we consider

the rating given by the client to the freelancer on the first such completed job. Across condition

cells (besides Control), there are 125, 386 such first jobs, with 58, 787 unique clients and 110, 798

unique freelancers. We then observe whether the client-freelancer pair completed another contract

during the test time period.

The results imply that the verbal rating scales are substantially more informative than the numeric

scale – even a single rating provides more predictive power to the platform. Figure 3.2 shows, for

each condition, the likelihood that a freelancer given a certain rating is to be eventually rehired by

50 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

0 1 2 3 4 5

First client-freelancer pair rating

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or
m
al
iz
ed

re
h
ir
e
ra
te

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

Figure 3.2: Likelihood that a client will rehire a freelancer during the time period of the test, given
just the first rating the client gives that freelancer during the test period. Values are normalized
by the overall mean rehire rate. Confidence intervals are 95% intervals with bootstrapped sampling
done at the client level.

the same client, normalized by the overall mean rehire rate. Clients who gave a freelancer anything

but a “5” on the numeric scale almost never rehired the freelancer. With the positive-skewed verbal

scales, by contrast, there is a smoother decline of rehire rate, giving the platform finer-grained

insight on whether a freelancer is likely to be rehired. Furthermore, top verbal rating scores better

identify truly exceptional freelancers: for example, freelancers are 31.8% more likely to be rehired

after receiving the top rating in the Average treatment than they are after receiving the top numeric

score (1.56x and 1.18x higher than the average rehire rate, respectively). Clients are providing more

information when asked to rate freelancers on the verbal scale.

Note, however, that rehiring data during the test period does not provide enough information

to construct reliable quality estimates for individual freelancers: a given freelancer typically only

matches with a few unique clients and the rehire decision is itself noisy. In the next sub-section, we

construct such freelancer-level quality estimates by looking at freelancer ratings across cells.

Correlation with estimated freelancer quality

In this section, we estimate each freelancer’s quality and use this estimate to construct a joint

distribution of estimated freelancer quality and ratings under a given scale. We then use this joint

distribution to compare different designs.

Recall that in our experiment design, a given client is only in a single treatment cell throughout

3.4. LABOR MARKET TEST RESULTS 51

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(a) Average treatment

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(b) Numeric treatment

Figure 3.3: Joint distributions of freelancer quality vs. ratings in the Average and Numeric treatment
cells, respectively. Low, Medium, and High quality sellers refer to those with other cell average
ratings in [0, 2), [2.5, 3.5) and [4.5, 5], respectively. The Y axis is the probability that a freelancer
of a given quality receives a rating at least as high as the X axis. Confidence intervals are 95%
intervals with bootstrapped sampling done at the client level.

the test period. On the other hand, a given freelancer may complete jobs with and receive ratings

from clients across treatment cells. Thus the ratings any individual freelancer receives in different

treatment cells are independent.

We can leverage this independence to construct approximate joint distributions of freelancer

quality and ratings in each treatment cell as follows. For a given treatment cell, we consider all

freelancers who received at least three ratings in the other treatment cells, and we estimate a

freelancer’s quality via a simple average of these ratings. For each given treatment cell, these

estimates of quality are exogenous with respect to the ratings received in that cell. For each treatment

cell, we then construct a joint distribution over freelancers of the rating received in that cell, and

the estimated quality of that freelancer.

We note that given the amount of data we had available, our estimates of these joint distributions

are noisy. The freelancer quality estimates are only from about three ratings across the various

treatment cells, and responses in the cells themselves differ in meaning. In practice, a platform with

access to historical performance data across a longer time-period, especially for long-lived sellers,

may be able to construct more reliable estimates.

Figure 3.3 includes two such joint distributions, for the Average and Numeric treatments, re-

spectively. The Appendix contains the same joint distribution for the other treatment cells; we also

show another way to group freelancers by their average ratings, and similar patterns emerge. In all

treatment cells, higher quality freelancers receive better ratings, though to varying degrees.

In the Numeric cell, most freelancers receive high ratings independent of quality, and it may be

difficult to distinguish high and medium quality freelancers. In contrast, in the Average cell there

52 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

is a larger gap between freelancers of different quality, and qualitatively one expects that this gap is

beneficial in terms of learning freelancer quality. In this sense, the Average cell is providing ratings

that are more informative than the Numeric cell.

3.4.3 Discussion

These results suggest that there are countervailing forces to ratings inflation that can induce ratings

to be more dispersed than in existing systems, by shifting how buyers interpret the scale: a platform

can find large improvements over standard rating systems by explicitly defining what each rating

means and positive-skewing such descriptions. In particular, though ratings still tend positive in

absolute terms in our verbal scales (over 80% of freelancers receive Above Average or better), clients

seem hesitant to give most freelancers the best possible score when such a score is interpreted as

truly exceptional. This deflationary effect has positive information implications for the platforms.

For example, freelancers who receive such a rating are more likely to be rehired by the platform.

Furthermore, this large effect is first order and dwarfs other sources of rating variation on the

labor market. For example, in the Appendix we show that rating heterogeneity across market

segments is small, on the order of 0.1 differences in means. Similarly, the treatment with randomized

answer choices reveals that clients tend to pick the first choice presented more than others, but again

the effect is second order.

We conclude by noting that our qualitative assessment of the joint distribution of estimated

quality and ratings in Section 3.4.2 is somewhat ad hoc. Motivated by this work, in the next section

we develop a quantitative approach to capture the performance gain of verbal rating scales, based

on the joint distribution of estimated quality and observed ratings. In particular, we compare

rating system designs in terms of the speed at which they allow the platform to correctly rank the

freelancers.

3.5 A framework to compare rating scales

The preceding section establishes, through a variety of metrics, that a platform can improve the

information obtained through the rating system through careful choice of the descriptions for each

level of a multi-level rating scale. This finding naturally prompts the question: is there a principled

way to compare rating scale designs to find the one that is “best” for the platform? We now develop

a framework to do so.

In particular, we take the perspective that the platform’s objective is to ensure that the ranking of

sellers based on their aggregate rating score converges to the true ranking at the fastest rate possible

in the number of ratings received. We develop a stylized model to formalize this notion and use it to

develop an approach to compare and optimize rating systems. The stylized model we consider has

the following key elements. We assume that buyers enter per time period and match with long-lived

3.5. A FRAMEWORK TO COMPARE RATING SCALES 53

sellers, potentially at varying rates according to the seller’s quality. After the match, the buyer rates

the seller; the rating behavior depends on the rating scale (answer choices, e.g., the adjectives or

other answer phrasings in Table 3.1). The platform’s design levers are the answer choices making

up the rating scale, and the scores it attaches to those adjectives. We leverage this stylized model

to propose an approach to maximize the rate of convergence (in a large deviations sense) of the

estimated ranking based on sellers’ aggregate scores, to the true underlying ranking based on sellers’

qualities. We apply this methodology to our labor market data (presented in Section 3.5.3), and to

a synthetic dataset collected through Amazon Mechanical Turk (presented in the Appendix).

3.5.1 Model

Our model is constructed to emphasize the platform’s learning rate of participants through its

rating system. It is deliberately stylized so that we can derive a relatively straightforward method

to compare and optimize rating scales. The key components are as follows.

Time. Time is discrete: k = 0, 1, 2,

Sellers. The system consists of a unit mass of sellers, each associated with a quality type θ,

which is (initially) unknown to the platform. We assume θ is drawn independently and uniformly at

random from a finite and totally ordered set Θ, with |Θ| = M . We use θi to denote the ith element

of Θ within this order, for 0 ≤ i < M .

In addition, each seller has an aggregate score, described further below; we let xk(θ) denote the

aggregate reputation score of the seller of type θ at time k.

Rating accumulation. Sellers accumulate ratings over time by matching with buyers. At each

time step, each seller matches with at most a single buyer. We make one key assumption that

drives the accumulation of ratings: in particular, that sellers of higher quality are more likely to be

matched. We consider an analysis that is asymptotic in the number of ratings received by sellers and

so we model this visibility benefit by assuming that sellers of higher quality accumulate ratings at a

faster rate. In particular, we assume the existence of a nondecreasing match function g(θ), where a

seller of type θ receives nk(θ) = bkg(θ)c matches, and thus ratings, up to time k.

Our approach to modeling rating accumulation is stylized in at least two important ways. First,

the matching function is artificial: in general, sellers are more likely to match when they have a

higher observed aggregate score, and there may be other heterogeneity as well. Second, we suppose

all sellers have the same age: at time k, all sellers have had k opportunities to match with buyers.

In reality, of course, sellers have different ages on a marketplace. These choices allow us to develop a

clean approach to optimizing the learning rate; we discuss the consequences further in our empirical

investigation in Section 3.5.3.

Ratings. How are sellers rated? After each match, the seller receives a rating in the form of a

multiple choice question answered by the buyer. The platform makes two decisions at the beginning

when designing this question. First, the platform chooses a rating scale Y , composed of an ordered

54 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

set of answer choices y ∈ Y from which the buyer will choose. Second, whenever a seller receives a

rating y ∈ Y , the platform gives the seller a score φ(y) ∈ [0, 1] depending only on the rating received.

The score represents the relative positivity assigned to a rating y: high scores positively affect the

seller’s aggregate score (as we formally describe below). Platforms often use equally spaced scores

when translating rater’s choices to an aggregate score (e.g., the choice “5 stars” translates to a

numeric 5 when averaging, the choice “4 stars” translates to a numeric 4 when averaging, etc.), but

we allow the possibility that this choice should also be optimized.

At each rating opportunity (i.e., match made), the seller receives a rating from the set Y , and we

assume that this rating depends only on the true quality of the seller. In particular, we presume that,

given scale Y , the probability a seller of type θ receives a rating y is ρ(θ, y|Y), with corresponding

cumulative mass function R(θ, y|Y) reflecting the probability a seller of type θ receives a rating y or

higher. In other words, the scale Y induces a joint distribution between the underlying seller quality

and the rating choices buyers make. We make the natural assumptions that R(θ, y|Y) is strictly

increasing in θ and strictly decreasing with y.

Let y0(θ), y1(θ), y2(θ), . . . be the sequence of ratings received by the seller of type θ. The aggregate

score up to time k of this seller is the average score from ratings received:

xk(θ) =
1

nk(θ)

nk(θ)∑

`=0

φ(y`(θ)). (3.1)

(We presume x0(θ) = 0 for all θ.) Since φ(y) ∈ [0, 1] for all y, the score xk also lies in [0, 1].

This rating behavior is also a strong assumption. In particular, it does not capture heterogeneity

across raters (the types of sellers a buyer matches with may correlate with the buyer’s rating behavior

in general). Including such heterogeneity is a direction for future work, and we discuss it further

in the conclusion Section 3.6; indeed, empirical identification of such heterogeneity presents an

interesting practical challenge.

System state. We represent the state of the system defined above by a joint distribution

µk(Θ, X), which gives the mass of sellers of type θ ∈ Θ with aggregate score xk(θ) ∈ X at time k.

Throughout our model presentation, we describe the system model as one emerging from interactions

between individual buyers and sellers. However, we assume a unit mass of sellers (and some mass

of buyers), and so all such descriptions should be viewed as illuminating the evolution of a joint

distribution µk(Θ, X) of the types of sellers on the platform and their current scores. To formally

describe the evolution of µk, let Ek = {θ : nk(θ) = nk−1(θ) + 1}. These are the sellers who receive

an additional rating at time k; for all θ ∈ Eck, nk(θ) = nk−1(θ). Next, for each x, x′ ∈ [0, 1], define

χk(x, x′, θ|Y, φ) as:

χk(x, x′, θ|Y, φ) ={y : nk(θ)x− nk−1(θ)x′ = φ(y)}.

The set χ describes the rating(s) a seller of type θ at time k with aggregate score x′ can receive to

3.5. A FRAMEWORK TO COMPARE RATING SCALES 55

transition to aggregate score x. We then have:

µk+1(Θ, X) =

∫

Ek

∫ 1

0

∫

X

∑

y∈χk(θ,x,x′|Y,φ)

ρ(θ, y|Y)dxµk(dθ, dx′) +

∫

Eck

∫

X

µk(dθ, dx′).

It is straightforward but tedious to check that the preceding dynamics are well defined, given our

primitives.

Platform objective. We assume that the platform wants the ranking of sellers by observed

aggregate score to reflect the underlying true quality ranking as closely as possible.

Formally, given θ1 > θ2, define Pk(θ1, θ2) as follows:

Pk(θ1, θ2) = µk(xk(θ1) > xk(θ2)|θ1, θ2)− µk(xk(θ1) < xk(θ2)|θ1, θ2). (3.2)

This expression captures the “errors” made by the ranking according to observed score. In particular,

when θ1 > θ2 but xk(θ1) < xk(θ2), the aggregate score ranking swaps the ordering of sellers θ1 and

θ2. Thus, a good rating system has large Pk(θ1, θ2).

We consider the problem of maximizing the following objective, a scaled version of Kendall’s τ

rank correlation between the estimated ranking of sellers and the true ranking:

Wk =
2

M(M − 1)

∑

θ1>θ2∈Θ

Pk(θ1, θ2) (3.3)

The coefficient ensures that Wk remains bounded even as M increases. This objective depends on

the model primitives R (rater behavior) and g (matching rates), as well as the platform’s decisions

Y (levels) and φ (score).

We note that, in this model, the goal of the rating system is to accurately rank sellers by quality.

Another approach may be to directly optimize for total platform revenue or aggregate welfare. This

approach would require primarily optimizing which matches occur, a focus of many other works. We

optimize information gained per match, for which finding the true ranking of sellers is a reasonable

objective. One observation in support of this choice is that the “deliverable” for the ratings team in

an online platform company is typically an accurate rating that can be an input to models used by

other teams throughout the organization. Further, in a model where matching rates are exogenously

determined by quality, we conjecture that optimizing other objectives (accuracy and revenue) would

produce qualitatively similar results.

Learning R(θ, y|Y). We note that our approach to quantify the learning rate, which we develop

in the next subsection, requires the platform to learn the rating joint distribution R(θ, y|Y) for

various potential rating scales Y . In our analysis of the labor market experiment, we provide one

approach to do so — using the data collected during the experiment itself to estimate seller qualities

θ. In practice, a platform with access to more historical data may rely on estimates of θ for a group

56 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

of “known” sellers; e.g., these may be long-lived sellers on the platform. The platform can then test

new rating scales, and use the resulting data to estimate R.

3.5.2 Quantifying design performance via convergence rate

As noted above, the platform has two design choices it makes: the set of rating levels Y , and the

score function φ. We now consider an approximate approach to maximization of the objective Wk,

by appropriate choice of Y and φ.

No single choice of Y and φ can simultaneously optimize Wk for all k: some designs may be

effective in separating the best sellers from the worst quickly, but then never separate all sellers.

Further, as long as φ(y) is strictly increasing, then because R(θ, y) is strictly increasing in θ, we have,

for all θ1 6= θ2, and all choices of Y and φ: limk→∞ Pk(θ1, θ2) = 1. Using the bounded convergence

theorem we conclude that limk→∞Wk = 1, independent of the design choice Y and φ. Thus any

design asymptotically – with enough ratings – recovers the true ranking of sellers.

For these reasons, we focus on maximization of the rate at which Wk converges; we call the

design (Y, φ) that maximizes this rate optimal. We use a large deviations approach to study the rate

of convergence (Dembo and Zeitouni, 2010), following other works that adopt this approach (Garg

and Johari, 2019a; Glynn and Juneja, 2004).

We have the following result.

Theorem 3.5.1.

r , − lim
k→∞

1

k
log(1−Wk) = min

0≤i<M
inf
a∈R
{g(θi+1)I(a|θi+1) + g(θi)I(a|θi)} (3.4)

where I(a|θ) = supz{za − Λ(z|θ)}, and Λ(z|θ) = log
∑
y∈Y ρ(θ, y|Y) exp(zφ(y)) is the log moment

generating function of a single rating given to seller of type θ.

The proof follows from standard results in large deviations analysis and is in the Appendix.

The expression in (3.4) is called the large deviations rate for W k. The theorem shows that

Wk(θ1, θ2)→ 1 exponentially fast, and provides an explicit relationship between our choice of Y and

φ, and the corresponding exponent. In other words, 1−Wk = O(e−rkpoly(k)).

Two rating systems can be compared by their respective learning rates: for each design, simply

calculate their rates and then compare. The rate function can be calculated numerically given R(·|Y),

φ and g(θ): in particular, observe that supz{za− Λ(z|θ)} is a concave maximization problem in z,

and infa∈R {g(θi+1)I(a|θi+1) + g(θi)I(a|θi)} is a convex minimization problem in a.

Our design optimization problem is thus as follows: choose Y and φ to maximize the large

deviations rate r in (3.4). We suggest the following approach, supposing the platform has a collection

of candidate scales {Yp}. First, experiment with each scale Yp and estimateR(θ, y|Yp) and g(θ). Then

use the following brute force approach to optimization: for each Yp, choose a random, increasing set

3.5. A FRAMEWORK TO COMPARE RATING SCALES 57

Learning rates
Condition Naive φ Optimal φ

Expectations 0.022 0.024
Adjectives 0.021 0.027
Average 0.023 0.026
Average, not affect score 0.013 0.014
Average, randomized 0.014 0.019
Numeric 0.009 0.009

(a) Large deviation learning rates.

0 100 200 300 400 500 600 700 800

Time

10−3

10−2

10−1

100

E
rr
or

Treatment

Expectations

Average

Adjectives

Average, not affect score

Average, randomized

Numeric

(b) Simulated performance of each rating scale.

Figure 3.4: We apply and test our design approach using experimental data from our online labor
market. Large deviation rates are calculated using Equation (3.4) and the joint distributions gen-
erated in Section 3.4.2. Optimal for each treatment corresponds to the highest learning rate among
many random scores.

of scores φ(y) ∈ [0, 1],∀y ∈ Yp in each iteration, and calculate the learning rate. For each candidate

scale Yp, run a large (exponential in |Yp|) number of such iterations. Finally, choose the design Yp, φ

with the best learning rate. While this is a brute force optimization, we envision a platform will not

be changing the rating system design very frequently, and thus computation time is not critical.

Qualitatively, φ(y) should be large if higher quality freelancers are much more likely to receive a

rating choice of at least y than are lower quality freelancers. If the rating joint distribution R(θ, y|Y)

is such that no such choice y exists, then the scale Y will perform poorly in separating the sellers.

In particular, rating scales with inflated responses are uninformative for this reason: every seller

independent of quality is likely to receive the most positive rating choice, and so nothing separates

low quality from high quality sellers. Similarly, a φ that does not reward sellers for receiving rare,

positive ratings, is suboptimal.

Finally, we note that the two parts of the design – scale Y and score mapping φ – differ in

their visibility to raters. Scale Y is presented to raters in order to induce a certain desirable rating

behavior R(·|Y). On the other hand, a platform need not share the mapping φ, which is simply

a technical tool that maximally leverages aggregate rating behavior to form an internal ranking

of sellers. The platform may then choose to share statistics about sellers to buyers, for example

whether a seller is in the top 25%. The optimal information sharing procedure is a question tackled

by other work (Acemoglu et al., 2017; Ifrach et al., 2017; Papanastasiou et al., 2017).

3.5.3 Application to the online labor market

We now follow the design approach outlined above using the empirical R(·|Yp) calculated in Sec-

tion 3.4.2 for each scale Yp in the test. For simplicity, we assume a uniform search rate g(θ) = 1 for

58 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

all θ; the simulation results are robust to this choice.

Large deviation learning rates for each design

First, we calculate the large deviation rates for each treatment scale, assuming equally spaced scores

φ = {0, 1, 2, 3, 4, 5}. All of the verbal treatments have larger learning rates than the Numeric

treatment, as shown in Figure 3.4a.

Next, we optimize the scores φ for each of the scales. Figure 3.4a also contains the learning rate

achieved by the corresponding optimal score function for each treatment. It suggests that picking

the correct labels on the scale is the first order determinant of the rating system’s performance,

while the optimal scores are second order.

The optimal scores themselves (in Appendix Table B.3) reflect the corresponding joint distribu-

tions. For example in the Numeric scale, only the frequency of receiving the top rating distinguishes

freelancers; thus freelancers receive a lesser score (3.45/5, versus ≈ 4/5) for the second-highest rating

in that scale versus in the verbal rating scales.

Note that perhaps because our estimation procedure on the joint distribution is noisy, the Average

and Average, not affect score treatments differ in their joint distributions and learning rates, even

though they have identical marginal distributions and rehire rates.

Simulated market performance of each design

Finally, we simulate a market for each of the treatment conditions as follows, in order to compare

how the scales perform.

In our simulation, there are 500 sellers with i.i.d. quality in {Low, Medium, High}. There are

100 buyers, each of which matches uniformly at random to a unique seller per time period. In other

words, matching is not independent across sellers, and each seller can only match once per time

period; each seller matches approximately once every 5 time periods. The buyers rate the sellers

according to the joint distributions calculated in Section 3.4.2. Ratings are converted to scores

according to the optimal score function for each treatment. All sellers enter the market at time

k = 0 and do not leave. After each time period, the sellers are ranked according to their average

scores. The true ranking of sellers (i.e., Low < Medium < High) is also constructed. We then

calculate the Kendall’s τ rank distance (not counting sellers tied according to true quality) between

the two lists.

Figure 3.4b shows the mean (across many simulations) ranking errors over time for each treatment

system as described. The plot and corresponding learning rates for each treatment demonstrate

that even though large deviations rates are an asymptotic quantity, they effectively predict the

performance of each rating scale even for small horizons. The Numeric treatment in particular

learns the ranking of sellers at a much slower rate than do the other mechanisms, both in terms of

learning rate and simulated performance.

3.6. CONCLUSION AND DISCUSSION 59

In Appendix Figure B.5, we show other simulations and analyses as robustness checks. First, we

show performance over time when each seller independently leaves the market with probability .01

at the end of each time k, with a new seller with no reputation score taking her place; such entry

and exit does not affect the comparative performance of each rating scale. Robustness to such entry

and exist further suggests that designed scales will outperform others when only sellers’ most recent

ratings are used, in order to facilitate and reflect seller improvement, cf. (Aperjis and Johari, 2010).

Next, we compare learning with equally spaced vs. optimal φ; as suggested by the learning rates,

calculating an optimal φ has a small but noticeable effect in performance.

Finally in Appendix B.2, we repeat the analysis for a synthetic setting on Mechanical Turk that

demonstrates the utility of our methods for survey contexts beyond ratings on online platforms. We

find that superficially similar scales may perform dramatically differently in a way that is not a priori

knowable before conducting an experiment and calculating learning rates. We evaluate performance

of each treatment scale on new data not used for scale optimization and find that performance

improvements can transfer to a deployment.

3.6 Conclusion and discussion

In this work, we study the the design of informative rating systems. We demonstrate through a field

test on a large online labor platform that there can be substantial benefit to changing answer choices

and question phrasing in a rating scale. In particular, we observe that (1) it is possible to choose a

design of the verbal descriptions attached to answer choices present in the rating system that lead

to deflated ratings, and (2) that these ratings are much more informative than ratings obtained in

standard numeric rating systems. Motivated by this finding, we develop a technical framework to

compare and design the scales by properly choosing the answer choices available to raters and the

mapping of these choices to scores. We show that applying this framework can lead to designs that

appear to substantially outperform ad hoc choice of the rating scale. We believe this work provides

a foundation for a much more systematic approach to the design of rating systems, and that it has

direct practical guidance for platforms to build more informative systems.

3.6.1 Challenges, opportunities, and limitations

Fraud in online reviews and ratings Our results establish that verbal rating scales can effec-

tively counter behavioral norms and implicit pressures to provide maximally positive ratings. How-

ever, such scales do not constrain rater behavior and thus are ineffective against inflation caused

by ratings fraud, in which the seller may fake transactions and rate themselves. There is a large

literature on the prevalence of such fraud and techniques to detect it (Akoglu et al., 2013; Hooi et al.,

2016; Hu et al., 2011; Luca and Zervas, 2016; Zhang et al., 2013). Our work is complementary to such

approaches and is most appropriate for markets where such fraud is not the first order determinant

60 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

of rating inflation, such as on the labor market in question (as evidenced by the informative verbal

scales).

Horizontal vs. vertical differentiation In many markets, buyers have heterogeneous prefer-

ences over sellers, i.e., there is horizontal differentiation. Our work assumes that there is an under-

lying ranking of sellers, i.e., that sellers are vertically differentiated (at least among the buyers who

match with a given seller). If the matching process segments the market, then vertical differentiation

may dominate within each segment. For example, price and location may segment the market on

AirBnB such that only consumers with similar preferences match with and rate a given host. Then,

a single rating scale can be used if rating behavior is similar across segments (recall that we show

in Section 3.4.3 that scales perform similarly across segments in our labor market). In markets with

substantial horizontal differentiation (even given that a buyer and seller have matched), however,

the methods in this work can be used either (1) with comparatively objective questions (e.g., rating

cleanliness or timeliness), where there may be vertical differentiation; or (2) alongside techniques

that detect heterogeneous preferences and create “virtual” market segments (when feasible). In par-

ticular, our work is applicable wherever rating scales are used under the assumption of some degree

of vertical differentiation.

International markets One potential difficulty in implementing verbal rating scales is that they

must be designed in each language, and people in different cultures may interpret the same scale

differently. This difficulty is especially acute as modern online platforms often operate globally. We

note that verbal scales provide an opportunity as well as a challenge. There is variation across

cultures in numeric rating systems, both for response scales in general and for online platforms

in particular (Chen et al., 1995; Hamamura et al., 2008; Koh et al., 2010; Wang et al., 2015).

In the status quo, the platform is left without a mechanism through which it can equalize the

rating distributions. On the other hand, with verbal rating scales, if comparable ratings across

regions are important, the platform can choose scales for each region that provide comparable rating

distributions.

Using ratings for search and matching Another potential concern is that at the moment

the answers to these questions are not used on the platform for other functions, such as search

or matching. As illustrated by Filippas et al. (2019), some inflation for private questions is to be

expected once the answers start affecting freelancers, even if freelancers cannot directly identify the

client who provided any specific rating (e.g., if freelancers start asking for higher ratings on this

question). We cannot completely eliminate this concern and leave the question for future work after

a treatment condition is chosen to be implemented permanently on the platform. However, note that

the marginal rating distributions and relation to how often freelancers are rehired by a client are

extremely similar for the Average, and Average, not affect score conditions: either the clients already

3.6. CONCLUSION AND DISCUSSION 61

are aware that the question they are answering is a test question that will not affect freelancers,

or this additional information does not substantially influence how clients rate beyond the deflating

effects of the answer choices in question.

Switching to a new rating system One final practical concern with introducing a new rating

system with drastically different behavior is that it may be challenging from a data integrity perspec-

tive: how can old, inflated ratings be compared to the new ratings, and how can models throughout

the platform be adjusted to handle both types of ratings? In some settings, such as our large online

labor market, the new system can simply co-exist with the status quo: multiple questions can be

asked in the rating form until enough time has passed with the new system such that older, inflated

data is no longer useful. This approach adds friction in the form of additional work for clients, but it

may be a price worth temporarily paying for finer resolution information. On other platforms where

typically users are only asked one question, the transition may be more challenging. However, such

platforms have begun experimenting with their rating systems. Furthermore, ratings data typically

grows stale, as sellers enter and exit the platform or improve over time, and platforms often only

use the last few ratings given to each seller (Aperjis and Johari, 2010). Such factors mitigate the

cost of switching to a new system.

3.6.2 Future work

Platform goals Rating systems should reflect the specific goals and context of a platform. On

some platforms, it may be undesirable to attempt to fully recover the ranking of sellers. For example,

platforms that provide a commodified experience (e.g., ridesharing or delivery services) may only

care about identifying bad actors on the platform. In this setting for example, asking buyers to

rate sellers against the “average” may place undesirable, excessive pressure on sellers to attempt

to distinguish themselves. Rather, the platform should potentially encourage raters to give good

ratings unless something truly bad happened. Platforms in practice already do this; for example,

when a passenger rates a driver 4 stars out of 5, Lyft describes the choice as “OK, could have been

better.”

The methods in this work are most appropriate in settings where true differentiation exists

between items or sellers (whether this differentiation is under the control of sellers or not), and it

is desirable to identify and encourage comparatively high performers. Future work should closely

examine the practical and theoretical relationships between a platform’s informational goals and its

rating system design. We take a theoretical step in this direction in our work on designing binary

rating systems (Garg and Johari, 2019a).

Dynamic design and combating inflation over time Even with our non-inflated rating scales,

it may be possible that over time norms shift so that again ratings become inflated. In this event,

62 CHAPTER 3. DESIGNING INFORMATIVE RATING SYSTEMS

optimization of comparison points and rating scales may need to be a dynamic process for a platform.

An important direction for future research is to consider a dynamic equilibrium view of rating

system design. In particular, online marketplaces and platforms should aim to design systems that

are naturally robust to inflation yet provide an good user experience. A complete picture should

consider how search, buyer rating behavior, and seller behavior may change in response to changes

in the rating system. Capturing these short- and long-run equilibrium effects remain important

challenges. We believe our work provides an important empirical and theoretical building block in

this direction, by suggesting that the meaning raters attach to levels of a scale can substantially

influence the quality of information obtained by the platform.

Chapter 4

Designing Optimal Binary Rating

Systems

4.1 Introduction

As discussed in the previous chapter, rating and ranking systems are everywhere, from online market-

places (e.g., 5 star systems where buyers and sellers rate each other) to video platforms (e.g., thumbs

up/down systems on YouTube and Netflix). However, they are uninformative in practice (Nosko

and Tadelis, 2015). One recurring pattern is that ratings binarize – most raters only use the extreme

choices on the rating scale, and the vast majority of ratings receive the best possible rating. For

example, 75% of reviews on Airbnb receive a perfect rating of 5 stars (Fradkin et al., 2018). Further-

more, several platforms have adopted a binary rating system, in which a user rates her experience as

either positive or negative. Given the prevalence of binary feedback (either de facto or by design),

in this work we investigate the optimal design of such binary rating systems so that the platform

can learn as fast as possible about the items being rated.

The marketplace model is similar to that of Chapter 3, except that the rater answers a binary

question (as opposed to a multiple choice question with more than 2 choices). This simplification

allows for far more theoretical insight on optimal design of rating systems, e.g., allows a characteri-

zation of how the best possible design changes with the informational goals of a platform.

This chapter is joint with Ramesh Johari. Published at the International Conference on Artificial Intelligence and
Statistics (AISTATS), in 2019 (Garg and Johari, 2019a). We thank Michael Bernstein and participants of the Market
Design workshop at EC’18. This work was funded in part by the Stanford Cyber Initiative, the National Science
Foundation Graduate Research Fellowship grant DGE-114747, and the Office of Naval Research grant N00014-15-1-
2786.

63

64 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

In particular, the rating pipeline studied in this chapter is as follows: A buyer enters a platform

and matches with an item (e.g. selects a video on Youtube, is paired with a driver on Uber, or selects

a home on AirBnB). She has an experience (e.g. a view, ride, or stay). Then, the platform asks her

to rate her experience, i.e. it asks her a question. In a binary system, she indicates whether her

experience was positive or negative. She then leaves. The platform uses the ratings it has received

to score the quality of items, potentially showing such scores to future buyers.

By designing such a system, we mean: the platform can influence how the buyer rates – how

likely she is to give a positive rating, conditional on the quality of her experience. It can do so by

asking her different questions, e.g. “Was this experience above average” or “Was this experience

the worst you’ve ever had?”. Different questions shift the probabilities at which items of various

qualities receive positive ratings.

Our first question is: what is the structure of optimal binary feedback? A rating system in

which every buyer gives positive ratings after each match, independent of item quality, will fail to

learn anything about the items. Clearly, better items should be more likely to receive positive ratings

than worse ones. But how much more likely?

Informally, suppose we have a set of items that match with buyers over time (at potentially

differing rates), and we wish to rank the items by their true quality θi ∈ [0, 1]. The platform

cannot observe θi, however. Rather, in our model, after each match, an item with quality θi receives

a positive rating with probability β(θi), and negative otherwise. In other words, the platform

observes, for each item i, a sequence of ratings that are each Bernoulli(β(θi)). Such ratings are

the only knowledge the platform has about items. The platform ranks the items according to the

percentage of its ratings (samples) that were positive. The function β : [0, 1] 7→ [0, 1] affects how

quickly the platform learns the true ranking, and it prefers to maximize the learning rate. We show

how to calculate an optimal β.

As an example, consider three items with qualities θa > θb > θc, and β such that β(θa) = 0.5

and β(θc) = 0.1, i.e. item a gets positive ratings after 50% of its matches, and item c after 10% of

its matches. It is unclear what β(θb) should be. Trivially, .1 < β(θb) < .5. Otherwise, even with

infinitely many ratings the items will be mis-ranked.

But can we be more precise? If β(θb) = .49, it will take many ratings of both items a and b to

learn that θa > θb, but only a few from c to learn that θc < θb. That may be good if the platform

wants to identify the worst item, but not if it wants to identify the best. It may also be fine if items

a and b match much more often with buyers than item c. Clearly, the optimal value for β(θb) is

objective and context dependent. Of course, the problem becomes more challenging with more items

i for which β(θi) must be chosen. Lastly, in this example, one might intuitively think β(θb) = 0.3 is

optimal by symmetry when the items matter equally and matching rates are identical. This guess

is incorrect. The optimal is β(θb) ≈ 0.28, due to the nature of binomial variance.

In this work, we first formalize the above problem and show how to find an optimal β(θ), jointly

4.2. RELATED WORK 65

for a set of items [0, 1]. β changes with the platform’s objective and underlying item matching rates.

Jumping ahead, Figure 4.1 shows optimal β in various settings under our model. For a platform that

wants to find the worst sellers, for example, the top half of items should each get positive ratings at

least 80 + % of the time; it is more important for the bottom half of items to be separated from one

another, i.e. get positive ratings at differing percentages.

Once we have calculated the optimal rating function β (given context on the platform goals and

matching rates), what should we do with it?

Our second question is: How does a platform build a rating system such that buyers behave

near-optimally, i.e. according to a calculated β? The platform cannot directly control buyer rating

behavior. Rather, it has to ask questions such that, for each item quality θ, a fraction β(θ) of raters

will give the item a positive rating. For example, by asking, “Is this the best experience you’ve

had,” the platform would induce behavior such that β(θ) is small for most θ. Most platforms today

ask vague questions (e.g. thumbs up/down), and items mostly get positive ratings. We show this is

highly suboptimal for ranking items quickly.

Our main contributions and paper outline are:

Rating system design as information maximization. In Sections 4.3.1-4.3.2, we formulate

the design of rating systems as an information maximization problem. In particular, a good rating

system recovers the true ranking over items, and converge quickly in the number of ratings.

Computing an optimal rating feedback function β. In Section 4.3.3, we develop an efficient

algorithm that calculates the optimal rating function β, which depends on matching rates and the

platform objective. The optimal β provides quantitative insights and principled comparisons between

designs.

Real-world system design. In Section 4.4, we show how a platform can use a simple ex-

periment and existing data to empirically design a near-optimal rating system, and to audit the

current system. In Section 4.5, we demonstrate the value of this approach through an experiment

on Mechanical Turk.

4.2 Related work

Many empirical and model-based works document and tackle challenges in existing rating systems,

many of which were discussed in Chapter 3 (Bolton et al., 2013; Cabral and Hortacsu, 2010; Cook,

2015; Filippas et al., 2019; Fradkin et al., 2018; Gaikwad et al., 2016; Hu et al., 2009; Immorlica

et al., 2010; Nosko and Tadelis, 2015; Rajaraman, 2009; Tadelis, 2016; Zervas et al., 2015). To our

knowledge, we are the first to formalize a rating system design problem and then show how one can

use empirical data to optimize such systems.

Other works also optimize platform learning rates (Acemoglu et al., 2017; Besbes and Scarsini,

2018; Che and Horner, 2015; Ifrach et al., 2017; Johari et al., 2017; Papanastasiou et al., 2017).

66 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

When prescriptive, they modify which matches occur, while we view the matching process as given

and modify the rating system. The solutions are complementary.

Many bandits works also seek to rank items from a sequence of observations (Katariya et al.,

2016; Maes et al., 2011; Radlinski et al., 2008; Yue and Joachims, 2009). Our problem is the inverse

of the bandit setting: given an arm-pulling policy, we design each arm’s feedback.1 Our specific

theoretical framework is similar to that of Glynn and Juneja (2004), who optimize a large deviations

rate to derive an arm-pulling policy for best arm identification.

The “twenty questions” interpretation of Shannon entropy (Cover and Thomas, 2012; Dagan

et al., 2017) seeks questions that can identify an item from its distribution. Dagan et al. (2017)

show how to almost match the performance of Huffman codes with only comparison and equality

questions. Our work differs in two key respects: first, we seek to rank a set of items as opposed to

identifying a single item; second, we consider non-adaptive policies (i.e. the platform cannot change

its rating form in response to what it knows about an item already).

4.3 Model and optimization

We now formalize our model and show how to optimize the rating function to maximize the learning

rate. We focus on finding an optimal β : [0, 1] 7→ [0, 1], a map from item quality θ to the probability

it should receive a positive rating. This section requires no data: we characterize the optimal system.

4.3.1 Model and problem specification

Our model is constructed to emphasize the rating system’s learning rate. Time is discrete (k =

0, 1, 2, . . .). Informally: there is a set of items. Each time step, buyers match with the items and

leave a rating according to β(θ). The platform records the ratings and ranks the items. Formally:

Items. The system consists of a set [0, 1] of items, where each item is associated with a unique

(but unknown) quality θ ∈ [0, 1]; i.e., the system consists of a continuum of a unit mass of items

whose unknown qualities are uniform2 in [0, 1]. Below, we discretize the continuous quality space

[0, 1] into M types, to calculate a stepwise increasing β. We will make clear why we introduce a

continuum but then discretize.

Matching with buyers. Items accumulate ratings over time by matching with buyers. We

assume the existence of a nondecreasing match function g(θ), where item θ receives nk(θ) = bkg(θ)c
matches, and thus ratings, up to time k. In other words, item θ is matched approximately every 1

g(θ)

time steps. g(θ) ≤ 1 and bounded away from 0, i.e. ∃c > 0: g(θ) > c. This accumulation captures

the feature that better items may be more likely to match.

1Note that a rating is not the same as a reward; buyers often give positive ratings after bad experiences.
2Any distribution can be handled by considering θ to be the item’s quantile rather than its absolute quality.

4.3. MODEL AND OPTIMIZATION 67

Ratings. The key quantity for our subsequent analysis is the probability of a positive rating for

each θ, β(θ) , Pr(positive rating|θ). Let y`(θ) ∼ Bernoulli(β(θ)) be the rating an item of quality θ

receives at the `th time it matches.

Aggregating ratings and ranking sellers. These ratings are aggregated into a reputation

score, xk(θ), at each time k. The score is the fraction of positive ratings received up to time k:

xk(θ) , 1
nk(θ)

∑nk(θ)
`=0 y`(θ) with x0(θ) , 0 for all θ. Thus, xk(θ) ∼ 1

nk(θ)Binomial(β(θ), nk(θ)).

System state. The state of the system is given by a joint distribution µk(Θ, X), which gives the

mass of items of quality θ ∈ Θ ⊂ [0, 1] with aggregate score xk(θ) ∈ X ⊂ [0, 1] at time k. Because

our model is a continuum, the evolution of the system state µk follows a deterministic dynamical

system.

We have described these dynamics at the level of individual items; however, such statements

should be interpreted as describing the evolution of the joint distribution µk. The state update for

µk is determined by the mass of items that match and the distributions of their ratings. A formal

description of the state evolution is in Appendix Section C.2.1.

Platform objective. The platform wishes to rank the items accurately. Given β and θ1 > θ2,

define:

Pk(θ1, θ2|β) =µk
(
xk(θ1) > xk(θ2)|θ1, θ2

)
− µk

(
xk(θ1) < xk(θ2)|θ1, θ2

)
(4.1)

This expression captures observed score ranking’s accuracy. When θ1 > θ2 but xk(θ1) < xk(θ2), the

ranking mistakenly orders θ1 below θ2. A good system has large Pk(θ1, θ2|β). Integrating across

items creates the following objective for each time k:

Wk =

∫

θ1>θ2

w(θ1, θ2)Pk(θ1, θ2|β)dθ1dθ2 (4.2)

Weight function w(θ1, θ2) > 0 indicates how much the platform cares about not mistaking a quality

θ1 item with a quality θ2 item. We consider scaled w such that
∫
θ1>θ2

w(θ1, θ2)dθ1dθ2 = 1.

Our first question then becomes: What β yields the highest value of Wk? As discussed above,

the platform influences β through the design of its rating system. The optimal choice of β sets the

benchmark.

Discussion. Objective function. The specification (4.2) of the objective is quite rich. It contains

scaled versions of Kendall’s τ (with w(θ1, θ2) = 1 for all θ1, θ2) and Spearman’s ρ (with w(θ1, θ2) =

θ1 − θ2) rank correlations. w allows the platform to encode, for example, that it cares more about

correctly ranking just the very best, very worst, or items at both extremes.3 Tarsitano (2009) and

da Costa and Roque (2006) discuss other well-studied examples.

Relationship between model components. Qualitatively, β affects Wk as follows, as previewed in

the introduction: when β(θ1) ≈ β(θ2), then xk(θ1) ≈ xk(θ2), and so Pk(θ1, θ2|β) is small (errors are

3We use θ1θ2(θ1 − θ2), (1− θ1)(1− θ2)(θ1 − θ2), and (1
2
− θ1)2(1

2
− θ2)2(θ1 − θ2) as examples.

68 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

0.0 0.2 0.4 0.6 0.8 1.0

Quality θ

0.0

0.2

0.4

0.6

0.8

1.0

β
(θ
)

Kendall’s τ , Spearman’s ρ

Prioritizing worst items

Prioritizing best items

Prioritizing extreme items

(a) Fix g = 1, with various objective function weights
w

0.0 0.2 0.4 0.6 0.8 1.0

Quality θ

0.0

0.2

0.4

0.6

0.8

1.0

β
(θ
)

Linearly increasing matching Uniform matching

(b) Fix w = 1. Vary matching, g = 1, and g = 1+10θ
11

Figure 4.1: Optimal β (with M = 200) with various objective weight functions w and matching
rates g.

common). A good design thus would have large β(θ1) − β(θ2) for θ1 > θ2 where w(θ1, θ2) is large.

Matching function g also affects Pk and thus Wk: when g(θ) is large, more ratings are sampled from

item of quality θ, i.e. nk(θ) is higher, and so xk(θ) is more closely concentrated around its mean

β(θ). Thus, Pk(θ, θ′|β) increases (for all θ′) with g(θ). A good design of β thus considers both w

and g.

Matching. As noted above, we assume items receive a non-decreasing number of ratings based

on their true quality, through matching function g(θ). This is a reasonable approximation for our

analysis, where we focus on the asymptotic rate of convergence of the ranking based on to the true

ranking, as the number of ratings increases. In practice, items will be more likely to match when

they have a higher observed aggregate score. Similarly, our model makes the stylized choice that all

items have the same age. In reality, items have different ages in platforms.

Non-response. In practice, many buyers choose not to rate items, which our model does not

capture. One possible approach is to treat non-response as a bad experience, which yields more

information in the work of Nosko and Tadelis (2015). Solutions to non-response is an important

area of work.

4.3.2 Large deviations & discretization

Recall the question: What β yields the highest value of Wk?. We now refine objective Wk and

constrain β to form a non-degenerate, feasible optimization task.

Large deviation rate function. Wk is not one objective: it has a different value per time k,

and no single β simultaneously optimizes Wk for all k.4 Considering asymptotic performance is also

4For example, consider β such that the worst half of items never receive a positive rating and the rest always do. It
would perform comparatively well for a small number of ratings k, as it quickly distinguishes the best from the worst
items. However it would never distinguish items within the same half. Some β′ may make more mistakes initially but
perform better at larger k.

4.3. MODEL AND OPTIMIZATION 69

insufficient: when β is strictly increasing in θ, limk→∞ Pk(θ1, θ2|β) = 1 ∀θ1, θ2 by the law of large

numbers. Thus, W , limk→∞Wk = 1, and any such β is asymptotically optimal.

For this reason, we consider maximization of the rate at which Wk converges, i.e., how fast

the estimated item ranking converges to the true item ranking. We use a large deviations ap-

proach (Dembo and Zeitouni, 2010) to quantify this convergence rate. Formally, given sequence

Yk ≤ limk→∞ Yk = Y , the large deviations rate of convergence is − limk→∞
1
k log(Y − Yk) = c. If c

exists then Yk approaches Y exponentially fast: Y − Yk = e−kc+o(k).

Then, we wish to choose β to maximize Wk’s large deviations rate, r = − limk→∞
1
k log(W−Wk).

Discretizing β. Unfortunately, even this problem is degenerate if we consider continuous β: for

any β that is not piecewise constant, the large deviations rate of convergence is zero, i.e., convergence

of Wk to its limit is only polynomially fast, and characterizing the dependence of this convergence

rate on β is intractable. Thus, the rate of convergence for Wk is not a satisfactory objective with

continuous β.

We make progress by discretizing β; in particular, we restrict attention to optimization over

stepwise increasing β functions.5 Among stepwise increasing β, the large deviations rate of Wk to

its limiting value W can be shown to be nondegenerate, i.e. ∃c > 0 s.t. W −Wk = e−kc+o(k). (See

Lemma C.3.4 in the Appendix for further discussion.)

Notationally, we will calculate an optimal stepwise increasing β with M levels, i.e. there are M

intervals Si ⊂ [0, 1] and levels ti such that when θ1, θ2 ∈ Si, then β(θ1) = β(θ2) , ti. The challenge

is calculating an optimal S∗ = {Si} and t∗ = {ti}.
The physical interpretation is that we group the items into M subsets (types) Si ⊂ [0, 1].

When items θ1, θ2 are in the same subset, then their asymptotic reputation scores are the same,

limk xk(θ1) = limk xk(θ2) , ti. These items cannot be distinguished from one another even asymp-

totically.

Though discretization allows us to define a large deviations rate for Wk, it comes at a cost: W ,

the limiting value of Wk, is no longer one. Different discretization choices S result in different W .

Our optimization problem: Within the class of stepwise increasing functions with M levels,

find the β that is optimal, i.e. is

(1) Asymptotically optimal. It yields the highest limiting value of Wk. AND

(2) Rate optimal. It yields the fastest large deviations rate r among asymptotically optimal β.

A remarkable result of our paper is a O
(
M log2 M

ε

)
procedure to find an optimal β with M

levels.

4.3.3 Solving the optimization problem

The theorem below shows that the problem decomposes into two stages: first, find optimal dis-

cretization intervals S∗; then, find optimal t∗ given S∗.

5Note that, even for purely computational reasons, calculating β requires discretization.

70 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Theorem 4.3.1. The β defined by the following choices of S∗ and t∗ is optimal:

S∗ = arg max
∑

0≤i<j<M
∫
θ2∈Si,θ1∈Sj w(θ1, θ2)d(θ1, θ2)

t∗ = arg max r(t), where6 gi , infθ∈Si g(θ) and

r(t) , − lim
k→∞

1

k
log(W −Wk) (4.3)

= min
0≤i≤M−2

inf
a∈R
{gi+1KL(a||ti+1) + giKL(a||ti)}

The proof is in the Appendix. The main hurdle is showing that the continuum of rates for

Pk(θ1, θ2) for each pair θ1, θ2 translates into a rate for Wk. This decomposition separates our two

questions: S∗ maximizes the limiting value of Wk given any t, and depends only on w; Then, t∗

maximizes the rate at which the limiting value is reached, given gi.

For Kendall’s τ and Spearman’s ρ, the optimal intervals are simply equispaced in [0, 1], i.e.

S∗i = [iM , i+1
M), because the entire item quality distribution is equally important. For other objective

weight functions w, the difficulty of finding the optimal subsets S∗ depends on the properties of w.

Since S∗ is trivial for Kendall’s τ and Spearman’s ρ – and w is just an analytic tool that formalizes

a platform’s goals – we focus on finding the optimal levels t∗.

Discussion. One may naturally wonder why we introduced a continuum of quality [0, 1] and

then discretized into M subsets, instead of starting with M types. As established in Theorem 4.3.1,

how we discretize (i.e. solving for S∗) allows for optimization of different objective weight functions

w; it determines which items are most valuable to distinguish.

Suppose we started with a set of M items. Then the only remaining challenge is to equalize

the rates at which each item is separated from others: the large deviations rate is unaffected by

the weight function w (it does not appear in the simplification of r(t)). In other words, given

a discrete set of M items (equiv, given S∗), calculating the optimal t is equivalent to solving a

maximin problem for the rates at which each type is distinguished from each of the others. Thus,

the algorithm below also solves the inverse bandits problem in which we wish to rank the M arms,

and we can choose the structure of the (binary) observations at each arm.

We further note that the choice of M is not consequential; in the Appendix Section C.2.4 we

show that in an appropriate sense, a sequence of optimal βM for each M converges as M gets large.

Algorithm to find the optimal levels We now describe how to find t∗, the maximizer of r(t).

The following lemma describes a system of equations to find the t∗ that maximizes r. It states

that t∗ equalizes the rates at which each interval i is separated from its neighbors. The proof involves

manipulation of r and convexity, and is in the appendix.

6KL(a||b) = a log b
a

+ (1− a) log 1−b
1−a is the Kullback-Leibler (KL) divergence between Bernoulli random variables

with success probabilities a and b respectively.

4.3. MODEL AND OPTIMIZATION 71

Lemma 4.3.1. The unique solution t∗ to the following system of equations maximizes r(t):

r(t0, t1) = r(t1, t2) = · · · = r(tM−2, tM−1) (4.4)

t0 = 0, tM−1 = 1

r(ti−1, ti) , − log

[(
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + ti−1

gi−1
gi−1+gi ti

gi
gi−1+gi

)gi−1+gi]

We do not know of any algorithm that efficiently and provably solves such convex equality

systems in general. However, we leverage some structure in our setting to develop an algorithm,

NestedBisection, with run-time and optimality guarantees. The efficiency of our algorithm results

from the property that, given a rate, ti is uniquely determined by the value of either of the adjacent

levels ti−1, ti+1, reducing an exponentially large search space to an almost linear one. Physically,

i.e., we only need to separate each type of item from its neighboring types.

Below we include pseudo-code. Akin to branch and bound, the algorithm proceeds via bisection

on the optimal value of tM−2. For each candidate value of tM−2, the other values can be found

using a sequence of bisection subroutines. These values approximately obey all the equalities in the

system (4.4) except the first. The direction of the first equality’s violation reveals how to change

the interval for the next outer bisection iteration.

Theorem 4.3.2. NestedBisection finds an ε-optimal t in O
(
M log2 M

ε

)
operations, where ε-optimal

means that r(t) is within additive constant ε of optimal.

The proof is in the appendix. The main difficulty is finding a Lipschitz constant ε(δ) for how

much the rate changes with a shift δ in a level ti. This requires lower bounding t1 as a function of

M . In practice, the algorithm runs instantaneously on a modern machine (e.g. for M = 200).

ALGORITHM 1: Nested Bisection
Data: Number of intervals M , match function g
Result: β levels, i.e. {t0 . . . tM−1}

1 Function main (M , δ, g)
2 while Uncertainty region for tM−2 is bigger than error tolerance do
3 Calculate r(tM−2, 1), the rate between current guess for tM−2, and tM−1 = 1.
4 Fixing tM−2, find t1 . . . tM−3 such that r(t1, t2) = r(t2, t3) = · · · = r(tM−3, tM−2) = r(tM−2, 1),

which can be done through a sequence of bisection routines.
5 Calculate r(0, t1), the rate between current guess for t1, and t0 = 0.
6 Compare r(tM−2, 1) and r(0, t1), adjust uncertainty region for tM−2 accordingly.

7 return {ti}

4.3.4 Visualization and discussion

Figure 4.1 shows how the optimal β varies with weights w and matching rates g. Higher relative

weights in a region lead to a larger range of β(θ) there to make it easier to distinguish those items

72 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

(e.g., prioritizing the best items induces a β shifted right). Higher relative matching rates g(θ)

have the opposite effect, as frequent sampling naturally increases accuracy for the best items. We

formalize this shifting in Appendix Section C.2.3.

It is interesting that even the basic case, with w = 1 and g = 1, has a non-trivial β. One would

expect, with weight and matching functions that treat all items the same, that β would be linear, i.e.

β(θ) = θ. Instead, a third factor non-trivially impacts optimal design: binomial variance is highest

near β(θ) = 1
2 . Items that receive positive ratings at such frequency have high-variance scores, and

thus the optimal β has a smaller mass of items with such scores.

4.4 Designing approximately optimal, implementable rating

systems

We now turn to our second question: How does a platform build and implement a real rating system

such that buyers behave near-optimally, i.e. according to a calculated β?. In this section, we give an

example design procedure for how a platform would do so, and in the next section we validate our

procedure through an experiment on Mechanical Turk.

Recall that β(θ) gives the probability at which an item of quality θ should receive a positive

rating. However, the platform cannot force buyers to rate according to this function. Rather, it

must ask questions of buyers that will induce a proportion β(θ) of them to give positive ratings for

an item θ.

Throughout the section, we assume that an optimal β(θ) has been calculated (for some M , g,

and w).

Resources available to platform. We suppose the platform has a set Y of possible binary

questions that it could ask a buyer, e.g., “Are you satisfied with your experience” or “Is this expe-

rience your best on our platform?”. Informally, at each rating opportunity (i.e., match made), the

rater can be shown a single question y ∈ Y. Let ψ(θ, y) be the probability an item quality θ would

receive a positive rating when the rater is asked question y ∈ Y.

We further suppose the platform has a set Θ of representative items for which it has access to

item quality. Θ, then, is the granularity at which the platform can collect data about historical

performance, or otherwise get expert labels. (We assume M � |Θ|).
Using known set Θ, the platform can run an experiment to create an estimate ψ̂(θ, y),∀y ∈ Y, θ ∈

Θ.

Design heuristic. How can the platform build an effective rating system using these primitives

and β? We consider the following heuristic design: the platform randomly shows a question y ∈ Y
to each buyer. The choice of the platform is a distribution H(y) over y ∈ Y; in other words, for

the platform the design of the system amounts to choosing the frequency with which each question

is shown. At each rating opportunity, y is chosen from Y according to H, independently across

4.5. MECHANICAL TURK EXPERIMENT 73

opportunities.

Clearly, the probability that an item θ receives a positive rating is: β̃(θ) ,
∑
y∈Y ψ(θ, y)H(y).

We want a distribution H such that β̃(θ) = β(θ) for all θ ∈ [0, 1], i.e., that the positive rating

probability for each item is exactly the optimal value. However, there may not exist any set of

questions Y with associated ψ and choice of H such that β̃ = β.7

We propose the following heuristic to address this difficulty. Choose a probability distribution

H to minimize the following L1 distance:

min
H:‖H‖1=1

∑

θ∈Θ

|β(θ)−
∑

y∈Y
ψ̂(θ, y)H(y)| (4.5)

This heuristic uses the data available to the platform, ψ̂(θ, y) for a set of items θ ∈ Θ, and designs

H so at least these items receive ratings close to their optimal ratings β(θi). Then, as long as ψ is

well-behaved, and Θ is representative of the full set, one can hope that β̃(θ) u β(θ), for all θ ∈ [0, 1].

Discussion. Real-world analogue & constraints. A special case of this system is already in

place on many platforms, where the same question is always shown. Static systems can be designed

by restricting H to only have mass at one question y. More generally, constraints can be used in

optimization (4.5).

Limitations. Our model does not allow for y to be chosen adaptively based on the platform’s

current knowledge of the item. In practice, this may be a reasonable restriction for implementation

purposes. Our model also restricts aggregation to be binary; the platform in our model does not use

information on how “hard” a question y is.

4.5 Mechanical Turk experiment

In the previous sections, we showed how to find an optimal rating function β and we how to apply

such a β to design a binary rating system using empirical data. In this section, we deploy an

experiment on Amazon Mechanical Turk to apply these insights in practice. First, we collect data

that can be used to create a reasonable real-world example of ψ(θ, y), as a proof of concept with which

we can apply our optimization approach. Then, we use this model to demonstrate some key features

of optimal and heuristic designs as computed via our methodology, and show that they perform well

relative to natural benchmarks. Details of experimental design, simulation methodology, and results

are in Appendix C.1.

Experiment description. We have a set of 10 English paragraphs of various writing quality,

with expert scores θ, from a TOEFL book (Educational Testing Service, 2005); there were 5 unique

possible experts ratings, i.e. θ ∈ {.1, .3, .5, .7, .9}. For each possible rating, we have two paragraphs

who received that score from experts.

7There are special cases where an exact solution exists. For example, let Y = [0, 1], and ψ(θ, y) = I[θ ≥ y].

74 CHAPTER 4. DESIGNING OPTIMAL BINARY RATING SYSTEMS

A
wf
ul

Ba
d

Po
or

M
ed
io
cr
e

Fa
ir

G
oo
d

G
re
at

Ex
ce
lle
nt

Ph
en
om
en
al

Question y

0.0

0.2

0.4

0.6

0.8

1.0

ψ̂
(θ
,y
)

(a) Experimental ψ̂(θi, y). Light blue
lines are best 2 paragraphs, dark blue
the worst.

0.0 0.2 0.4 0.6 0.8 1.0

θ

0.0

0.2

0.4

0.6

0.8

1.0

β
(θ
)

Optimal β

Estimated β̃

Representative θi

(b) β vs β̃ (using a calculated H)
for w = 1, g = 1.

10 20 30 40 50

Time

0.4

0.5

0.6

0.7

0.8

K
en
d
al
l’
s
τ
C
or
re
la
ti
on

Optimal β

β̃ from best H

β̃ from other H

(c) Simulated performance for
w = 1, g = 1.

Figure 4.2: Experiment and simulation results

We asked workers on Mechanical Turk to rate the writing quality of the paragraphs from a set

of adjectives, Y. Using this data, we estimate ψ(θ, y), i.e., the probability of positive rating when

a question based on adjective y ∈ Y is shown for paragraph with quality θ ∈ Θ. (e.g., “Would you

consider this paragraph of quality [adjective] or better?”) Figure 4.2a shows our estimated ψ̂ for

our 10 paragraphs.

Optimization. Next, we find the optimal β for various matching and weight functions using the

methods from Section 4.3. In particular, we have β for all permutations of the cases g = 1, g = 1+10θ
11 ,

and w = 1, w = θ1θ2(θ1 − θ2), and w = (1− θ1)(1− θ2)(θ1 − θ2). Recall that this step does not use

experimental data.

Then, using ψ̂ and calculated βs, we apply the heuristic from Section 4.4 to find the distribution

H with which to sample the questions (adjectives) in Y. Figure 4.2b shows the optimal β (with

g = 1, w = 1), and estimated β̃ from the procedure.

Simulation. Finally, we study the performance of these designs via simulation in various set-

tings. We simulate a system with 500 items and 100 buyers according to the model in Section

4.3.1, except that matching is stochastic: at each time, a random 100 items receive ratings, based

on observed scores xk(θ) rather than true quality θ. Furthermore, in some simulations, we have

sellers entering and exiting the market with some probability at each time step. We measure the

performance of all the designs. For comparison, we also simulate a naive H = 1
|Y| .

Note that our experiment only provides ψ̂ associated with qualities θ ∈ Θ, and for simulations

we construct a full ψ(θ, y),∀θ ∈ [0, 1] from these points by averaging and interpolating (in order to

model human behavior for the full system). Further, our calibrated simulations only provide rough

evidence for the approach: although we use real-world data, the simulations assume that our model

reflects reality, except for where we deviate as described above.

Results and discussion. Figure 4.2c shows the simulated performance (as measured by

Kendall’s τ correlation) of the various designs over time, when g = 1. Further plots are in the

4.5. MECHANICAL TURK EXPERIMENT 75

Appendix Figure C.4, showing performance under various weight functions w and matching func-

tions g, and with items entering and exiting the market. We find that:

First, the optimal β for each setting outperforms other possible functions, as expected. The

designs are robust to (some) assumptions in the model being broken, especially regarding matching.

Second, the H from our procedure outperforms other designs, but is worse than the optimal

system β. In general, the simulated gap between an implemented system and optimal design β

provides the platform quantitative insight on the system’s sub-optimality.

Third, comparing β̃ to β gives qualitative insight on how to improve the system. For example, in

Figure 4.2b, β̃ is especially inaccurate for θ ∈ [0, .4]. The platform must thus find better questions

for items of such quality. Figure 4.2a corroborates: our questions cannot separate two low quality

paragraphs rated differently by experts (in dark blue and green).

A wide range of recent empirical work has documented that real-world rating systems experience

substantial inflation; almost all items receive positive ratings almost every match (Filippas et al.,

2019; Fradkin et al., 2018; Tadelis, 2016). Our formulation helps understand how – and whether

– such inflation is suboptimal, and provides guidance to platform designers. In particular, rating

inflation can be interpreted as a current β(θ) that is very high for almost all item qualities θ. This

system is well-performing if the platform objective is to separate the worst items from the rest, or

if high quality items receive many more ratings than low quality ones; it is clearly sub-optimal in

other cases. Our paper provides a template for how a platform might address such a situation.

Part III

Designing Voting Mechanisms on

Civic Engagement Platforms

76

Chapter 5

Iterative Local Voting

5.1 Introduction

Methods and experiments to increase large-scale, direct citizen participation in policy-making have

recently become commonplace as an attempt to revitalize democracy. Computational and crowd-

sourcing techniques involving human-algorithm interaction have been a key driver of this trend (Ca-

bannes, 2004; Lee et al., 2014; McDermott, 2010; Quarfoot et al., 2017). Some of the most important

collective decisions, whether in government or in business, lie in high-dimensional, continuous spaces

– e.g. budgeting, taxation brackets and rates, collectively bargained wages and benefits, urban plan-

ning etc. Direct voting methods originally designed for categorical decisions are typically infeasible

for collective decision-making in such spaces. Although there has been some theoretical progress

on designing mechanisms for continuous decision-making (Cheng and Zhou, 2015; Moulin, 1980;

Procaccia and Tennenholtz, 2009), in practice these problems are usually resolved using traditional

approaches – they are either discretized before running an election, or are decided upon through

negotiation by committee, such as in a standard representative democracy (Cabannes, 2004; Gilman,

2012; Goel et al., 2016; Shah, 2007; Sintomer et al., 2008).

One of the main reasons for the current gap between theory and practice in this domain is the

challenge of designing practically implementable mechanisms. We desire procedures that are simple

enough to explain and use in practice, and that result in justifiable solutions while being robust

to the inevitable deviations from ideal models of user behavior and preferences. To address this

This chapter is joint with Vijay Kamble, Ashish Goel, David Marn, and Kamesh Munagala. Published at the
International Conference on World Wide Web (WWW), in 2017 (Garg et al., 2017). Journal version published at
the Journal of Artificial Intelligence Research (JAIR), in 2019 (Garg et al., 2019b). Supported by NSF grant nos.
CCF-1408784, CCF-1637397, CCF-1637418, and IIS-1447554, ONR grant no. N00014-15-1-2786, ARO grant no.
W911NF-14-1-0526, and the NSF Graduate Research Fellowship under grant no. DGE-114747. This work benefited
from many helpful discussions with Oliver Hinder.

77

78 CHAPTER 5. ITERATIVE LOCAL VOTING

challenge, a social planner must first make practically reasonable assumptions on the nature and

complexity of feedback that can be elicited from people and then design simple algorithms that

operate effectively under these conditions. Further, while robustness to real-world model deviations

may be difficult to prove in theory, it can be checked in practice through experiments.

We first tackle the question of what type of feedback voters can give. In general, for the types

of problems we wish to solve, a voter cannot fully articulate her utility function. Even if voters in a

voting booth had the patience to state their exact utility for a reasonably large number of points (e.g.

how much they liked each candidate solution on a scale from one to five), there is no reason to believe

that they could do so in any consistent manner. On the other hand, we posit that it is relatively

easy for people to choose their favorite amongst a reasonably small set of options, or articulate how

they would like to locally modify a candidate solution to better match their preferences. Such an

assumption is common and is a central motivation in social choice, especially implicit utilitarian

voting (Procaccia and Rosenschein, 2006).

In this paper, we study and experimentally test a type of algorithm for large-scale preference

aggregation that effectively leverages the possibility of asking voters such easy questions. In this

algorithm that we call Iterative Local Voting (ILV), voters are sequentially sampled and are

asked to modify a candidate solution to their favorite point within some local neighborhood, until

a stable solution is obtained (if at all). With a continuum of voters, no one votes more than once.

The algorithm designer has flexibility in deciding how these local neighborhoods are defined – in

this paper we focus on neighborhoods that are balls in the Lq norm, and in particular on the cases

where q = 1, 2 or ∞. (For M <∞ dimensional vectors, the Lq norm ‖x‖q , q
√∑

m |xm|q. q = 1, 2

and ∞ neighborhoods correspond to bounds on the sum of absolute values of the changes, the sum

of the square of the changes, and the maximum change, respectively.)

More formally, consider a M -dimensional societal decision problem in X ⊂ RM and a population

of voters V, where each voter v ∈ V has bounded utility fv(x) ∈ R,∀x ∈ X . Then we consider

the class of algorithms described in Algorithm 2. We study the algorithm class under two plausible

models of how voters respond to query (1), which asks for the voter’s favorite point in a local region.

� Model A: One possibility is that voters exactly perform the maximization asked of them,

responding with their favorite point in the given Lq norm constraint set. In other words, they

return a point arg maxx∈{s:‖s−xt−1‖q≤rt}fvt(x). Note that by definition of this movement, the

algorithm is myopically incentive compatible: if a voter is the last voter and no projections are used,

then truthfully performing this movement is the dominant strategy. In general, the mechanism

is not globally incentive compatible, nor incentive compatible with projections onto the feasible

region. Simple examples of manipulations in both instances exist.

� Model B: On the other hand, voters may not actually search within the constraint set to find

their favorite point inside of it. Rather, a voter v may have an idea about how to best improve the

current point and then move in that direction to the boundary of the given constraint set. This

5.1. INTRODUCTION 79

Algorithm 2: Iterative Local Voting (ILV)

1 Inputs: Initial solution x0 ∈ X , tolerance ε > 0, an integer N , initial radius r0 > 0, termination time
T , norm q for local neighborhood.

2 Output: Solution x.

� For t ≥ 1, sample a voter vt ∈ V at random from the population; set rt = r0/t
and elicit

x′t = arg maxx∈{s:‖s−xt−1‖q≤rt}fvt(x), (1)

and then compute xt = [x′t]X , where [·]X is a projection onto space X ; i.e. ask
the voter to move to her favorite point within constraints, and then project the
reported point onto X .

� Stop when either t = T , in which case return xT , or when maxl,m∈{t−N,...,t} |xl − xm| ≤ ε, in which
case return x = xt.

model leads to a voter moving the current solution in the direction of the gradient of her utility

function, returning a point xt−1 + rt
gt
‖gt‖q , for some gt ∈ ∂fvt(xt−1). Note that ∂f(x) denotes the

set of subgradients of a function f at x, i.e. g ∈ ∂f(x) if ∀y, f(y)− f(x) ≥ gT (y − x).

ILV is directly inspired by the stochastic approximation approach to solve optimization problems

(Robbins and Monro, 1951), especially stochastic gradient descent (SGD) and the stochastic sub-

gradient method (SSGM). The idea is that if (a) voter preferences are drawn from some probability

distribution and (b) the response of a voter to the query (1) moves the solution approximately in the

direction of her utility gradient, then this procedure almost implements stochastic gradient descent

for minimizing negative expected utility.

The caveat is that although the procedure can potentially obtain the direction of the gradient

of the voter utilities, it cannot in general obtain any information about its magnitude since the

movement norm is chosen by the procedure itself. However, we show that for certain plausible utility

and voter response models, the algorithm does indeed converge to a unique point with desirable

properties, including cases in which it converges to the societal optimum.

Note that with such feedback and without any additional assumptions on voter preferences (e.g.

that voter utilities are normalized to the same scale), no algorithm has any hope of finding a desirable

solution that depends on the cardinal values of voters’ utilities, e.g., the social welfare maximizing

solution (the solution that maximizes the sum of agent utilities). This is because an algorithm that

uses only ordinal information about voter preferences is insensitive to any scaling or even monotonic

transformations of those preferences.

5.1.1 Contributions

This work is a step in extending the vast literature in social choice to continuous spaces, taking into

account the feedback that voters can actually give. Our main theoretical contributions are as follows:

80 CHAPTER 5. ITERATIVE LOCAL VOTING

� Convergence for Lp normed utilities: We show that if the agents cost functions can be

expressed as the Lp distance from their ideal solution, and if agents correctly respond to query (1),

then an interesting duality emerges: for p = 1, 2 or ∞, using Lq neighborhoods, where q =∞, 2

and 1 respectively, results in the algorithm converging to the unique social welfare optimizing

solution. Whether such a result holds for general (p, q), where q is the dual norm to p (i.e.

1/p + 1/q = 1), is an open question. However, we show that such a general result holds if, in

response to query (1), the voter instead moves the current solution in the direction of the gradient

of her utility function to the neighborhood boundary.

� Convergence for other utilities: Next, we show convergence to a unique solution in two cases:

(a) when the voter cost can be expressed as a weighted sum of L2 distances over sub-spaces of the

solution space, under L2 neighborhoods – in which case the solution is also Pareto efficient, and

(b) when the voter utility can be additively decomposed across dimensions, under L∞ neighbor-

hoods – in which case the algorithm converges to the median of the ideal solutions of the voters

on each dimension.

We then build a platform and run the first large-scale experiment in voting in multi-dimensional

continuous spaces, in a budget allocation setting. We test three variants of ILV: with L1, L2 and

L∞ neighborhoods. Our main findings are as follows:

� We observe that the algorithm with L∞ neighborhoods is the only alternative that satisfies the

first-order concern for real-world deployability: consistent convergence to a unique stable solution.

Both L1 and L2 neighborhoods result in convergence to multiple solutions.

� The consistent convergence under L∞ neighborhoods in experiments strongly suggests the decom-

posability of voter utilities for the budgeting problem. Motivated by this observation, we propose

a general class of decomposable utility functions to model user behavior for the budget allocation

setting.

� We make several qualitative observations about user behavior and preferences. For instance, vot-

ers have large indifference regions in their utilities, with potentially larger regions in dimensions

about which they care about less. Further, we show that asking voters for their ideal budget

allocations and how much they care about a given item is fraught with UI biases and should be

carefully designed.

We remark that an additional attractive feature of such a constrained local update algorithm in

a large population setting is that strategic behavior from the voters is less of a concern: even if a

5.2. RELATED WORK 81

single voter is strategic, her effect on the outcome is negligible. Further, it may be difficult for a

voter, or even a coalition of voters, to strategically vote; one must reason over the possible future

trajectories of the algorithm over the randomness of future voters. One coalition strategy for L2 and

L∞ neighborhoods, voters trade votes on different dimensions with one another; we leave robustness

to such strategies to future work.

The structure of the paper is as follows. After discussing related work in Section 5.2, we present

convergence results for our algorithm under different settings in Section 5.3. In Section 5.4, we

introduce the budget allocation problem and describe our experimental platform. In Section 5.5, we

analyze the experiment results, and then we conclude the paper in Section 5.6. The proofs of our

results are in the appendix.

5.2 Related Work

Our work relates to various strands of literature. Furthermore, the term “iterative voting” is also

used in other works to denote unrelated methods (Airiau and Endriss, 2009; Meir et al., 2010).

5.2.1 Stochastic Subgradient Method

As discussed in the introduction, we draw motivation from the stochastic subgradient method

(SSGM), and our main proof technique is mapping our algorithm to SSGM. Beginning with the

original stochastic approximation algorithm by Robbins and Monro (1951), a rich literature sur-

rounds SSGM, cf. Boyd and Mutapcic; Jiang and Walrand (2010); Nemirovski et al. (2009); Shor

(1998).

5.2.2 Iterative Local Voting

A version of our algorithm, with L2 norm neighborhoods, has been proposed independently several

times (Benjamin et al., 2013; Chung and Duggan, 2018; Hylland and Zeckhauser, 1980) and is referred

to as Normalized Gradient Ascent (NGA). Instead of directly asking voters to perform query (1), the

movement ∇fv(xt−1)
‖∇fv(xt−1)‖2 would be estimated through population surveys to try to compute the fixed

point where Ev

[
∇fv(x)
‖∇fv(x)‖2

]
= 0. (Note that we work with distributions of voters and for strictly

concave utility functions, the movement for each voter is well-defined for all but a measure 0 set.

Then, given a bounded density function of voters, the expectation is well-defined).

This fixed point has been called Directional Equilibrium (DE) in the recent literature (Chung

and Duggan, 2018). The movement is equivalent to the movement in this work in the case voters

respond according to Model B and with L2 neighborhoods, and we show in Section 5.3.3 that, in

such cases, the algorithm converges to a Directional Equilibrium when it converges. We further

82 CHAPTER 5. ITERATIVE LOCAL VOTING

conjecture that even under voter Model A, if Algorithm 4 converges, the fixed point is a Directional

Equilibrium.

Several properties of the fixed point have been studied, starting from the work of Hylland and

Zeckhauser (1980) to more recently, the work of Chung and Duggan (2018) and Benjamin et al.

(2013): it exists under light assumptions, is Pareto efficient, and has important connections to the

Majority Core literature in economics. Showing that an iterative algorithm akin to ours converges to

such a point has been challenging; indeed, except for special cases such as quadratic utilities fv(x) =

−(x − xv)TΩ(x − xv), with society-wide Ω that encodes the relative importance and relationships

between issues (Benjamin et al., 2013), convergence is an open question.

Our algorithm differs from NGA in a few crucial directions, even in the case that the movement

is equivalent: by relating our algorithm to SSGM, we are able to characterize the step-size behavior

necessary for convergence and show convergence even when each step is made by a single voter, rather

than after an estimate of the societal normalized gradient. One can also characterize the convergence

rate of the algorithm (Nemirovski et al., 2009). Furthermore, the literature has referred to the L2

norm (or “quadratic budget”) constraint as “central to their strategic properties” (Benjamin et al.,

2017). In this work, this limitation is relaxed – the same strategic property, myopic incentive

compatibility, holds for the other norm constraints for their respective cases.

Finally, because we are primarily interested in designing implementable voting mechanisms, we

focus on somewhat different concerns than the directional equilibria literature. However, we believe

that the ideas in this work, especially the connections to the optimization literature, may prove

useful to work on NGA. To the best of our knowledge, no work studies such an algorithm with other

neighborhoods and under ordinal feedback, or implements such an algorithm.

5.2.3 Optimization without Gradients

Because we are concerned with optimization without access to voters’ utility functions or its gra-

dients, this work seems to be in the same vein as recent literature on convex optimization without

gradients – such as with comparisons or with pairs of function evaluations (Duchi et al., 2012, 2015;

Flaxman et al., 2005; Jamieson et al., 2012). However, in the social choice or human optimization

setting, we cannot estimate each voter’s utility functions or gradients exactly rather than up to a

scaling term, and yet we would like to find some point with good societal properties. This limitation

prevents the use of strategies from such works.

Jamieson et al. (2012), for example, present an optimal coordinate-descent based algorithm to

find the optimum of a function for the case in which noisy comparisons are available on that function;

in our setting, such an algorithm could be used to find the optimal value for each voter, but not

the societal optimum because each voter can independently scale her utility function. Duchi et al.

(2012) present a distributed optimization algorithm where each node (voter) has access to its own

subgradients and a few of its neighbors, but in our case each voter can arbitrarily scale her utility

5.2. RELATED WORK 83

function and thus her subgradients. Similar problems emerge in applying results from the work

of Duchi et al. (2015). In our work, such scaling does not affect the point to which the algorithm

converges.

5.2.4 Participatory Budgeting

The experimental setting for this work, and a driving motivation, is participatory budgeting, in

which voters are asked to help create a government budget. Participatory budgeting has been among

the most successful programs of Crowdsourced Democracy, with deployments throughout the world

allocating hundreds of millions of dollars annually, and studies have shown its civic engagement

benefits (Cabannes, 2004; Gilman, 2012; Goel et al., 2016; Lee et al., 2014; McDermott, 2010; Shah,

2007; Sintomer et al., 2008).

In a typical election, community members propose projects, which are then refined and voted on

by either their representatives or the entire community, through some discrete aggregation scheme.

In no such real-world election, to our knowledge, can the amount of money to allocate to a project

be determined in a continuous space within the voting process, except through negotiation by rep-

resentatives.

Goel et al. (2016) propose a “Knapsack Voting” mechanism in which each voter is asked to

create a valid budget under the budget constraint; the votes are then aggregated using K-approval

aggregation on each dollar in the budget, allowing for fully continuous allocation in the space. This

mechanism is strategy-proof under some voter utility models. In comparison, our mechanism works

in more general spaces and is potentially easier for voters to do.

We note that our approach may also be adapted for other multi-dimensional voting contexts,

such as voting on multiple issues simultaneously, cf. Garg et al. (2018a).

5.2.5 Implicit Utilitarian Voting

With a finite number of candidates, the problem of optimizing some societal utility function (based

on the cardinality of voter utilities) given only ordinal feedback is well-studied, with the same

motivation as in this work: ordinal feedback such as rankings and subset selections are relatively

easy for voters to provide. The focus in such work, referred to as implicit utilitarian voting, is

to minimize the distortion of the output selected by a given voting rule, over all possible utility

functions consistent with the votes, i.e. minimize the worst case error achieved by the algorithm due

to an under-determination of utility functions when only using the provided inputs (Caragiannis and

Procaccia, 2011; Caragiannis et al., 2017; Goel et al., 2017; Procaccia and Rosenschein, 2006). In this

work, we show convergence of our algorithm under certain implicit utility function forms. However,

we do not characterize the maximum distortion of the resulting fixed point (or even the convergence

to any fixed point) under any utility functions consistent with the given feedback, leaving such

analysis for future work.

84 CHAPTER 5. ITERATIVE LOCAL VOTING

Model A Model B
Spatial, (p, q) = (2, 2), (1,∞), or (∞, 1) Social Opt. (Thm 5.3.1)

Spatial, (p, q) s.t. 1/p+ 1/q = 1 ?
Social Opt. (Thm
5.3.2)

Weighted Euclidean Social Opt. (Thm 5.3.1)
Decomposable Medians (Thm 5.3.2)

Table 5.1: Summary of convergence results

5.3 Convergence Analysis

In this section, we discuss the convergence properties of ILV under various utility and behavior

models. For the rest of the technical analysis, we make the following assumptions on our model.

C1 The solution space X ⊆ RM is non-empty, bounded, closed, and convex.

C2 Each voter v has a unique ideal solution xv ∈ X .

C3 The ideal point xv of each voter is drawn independently from a probability distribution with

a bounded and measurable density function hX .

Under this model, for a solution x ∈ X , the societal utility is given by Ev[fv(x)]. and the social

optimal (SO) solution is any x∗ ∈ arg maxx∈X Ev[fv(x)].

“Convergence” of ILV refers to the convergence of the sequence of random variables {xt}t≥1 to

some x ∈ X with probability 1, assuming that the algorithm is allowed to run indefinitely (this

notion of convergence also implies the termination of the algorithm with probability 1).

In the following subsections, we present several classes of utility functions for which the algorithm

converges, summarized in Table 5.1. We further formalize the relationship to directional equilibria

in Section 5.3.3.

5.3.1 Spatial Utilities

Here we consider spatial utility functions, where the utilities of each voters can be expressed in the

form of some kind of spatial distance from their ideal solutions. First, we consider the following kind

of utilities.

Definition 5.3.1. Lp normed utilities. The voter utility function is Lp normed if fv(x) =

−‖x− xv‖p,∀x ∈ X .

Under such utilities, for p = 1, 2 and ∞, restricting voters to a ball in the dual norm leads to

convergence to the societal optimum.

Theorem 5.3.1. Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Lp
normed, and voters respond to query (1) according to either Model A or Model B. Then, ILV

5.3. CONVERGENCE ANALYSIS 85

with Lq neighborhoods converges to the societal optimal point w.p. 1 when (p, q) = (2, 2), (1,∞), or

(∞, 1).

The proof is contained in the appendix. A sketch of the proof is as follows. For the given

pairs (p, q), we show that, except in certain ‘bad’ regions, the update rule xt+1 = arg minx[‖x −
xvt‖p : ‖x − xt‖q ≤ rt] is equivalent to the stochastic subgradient method (SSGM) update rule

xt+1 = xt − rtgt, for some gt ∈ ∂Ev[‖x− xvt‖p], and that the probability of being in a ‘bad’ region

decreases fast enough as a function of rt. We then leverage a standard SSGM convergence result

to finish the proof. One natural question is whether the result extends to general dual norms p, q,

where 1/p+ 1/q = 1. Unfortunately, the update rule is not equivalent to SSGM in general, and we

leave the convergence to the societal optimum for general (p, q) as an open question.

Further, note that even if each voter could scale their utility function arbitrarily, the algorithm

would converge to the same point.

However, the general result does hold for general dual norms (p, q) if one assumes the alternative

behavior model.

Theorem 5.3.2. Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Lp
normed, and voters respond to query (1) according to Model B. Then, ILV with Lq neighborhoods

converges to the societal optimal point w.p. 1 for any p > 0 and q > 0 such that 1/p+ 1/q = 1.

The proof is contained in the appendix. It uses the following property of Lp normed utilities: the

Lq norm of the gradient of these utilities at any point other than the ideal point is constant. This

fact, along with the voter behavior model, allows the algorithm to implicitly capture the magnitude

of the gradient of the utilities, and thus a direct mapping to SSGM is obtained.

Note that the above result holds even if we assume that a voter moves to her ideal point xv in

case it falls within the neighborhood (since, as explained earlier, the probability of sampling such a

voter decreases fast enough).

Next, we introduce another general class of utility functions, which we call Weighted Euclidean

utilities, for which one can obtain convergence to a unique solution.

Definition 5.3.2. Weighted Euclidean utilities. Let the solution space X be decomposable into

K different sub-spaces, so that x = (x1, . . . , xK) for each x ∈ X (where
∑K
k=1 dim(xk) = M).

Suppose that the utility function of the voter v is

fv(x) = −
K∑

k=1

wkv
‖wv‖2

‖xk − xkv‖2.

where wv is a voter-specific weight vector, then the function is a Weighted Euclidean utility function.

We further assume that wv ∈ W ⊂ RK+ and xv are independently drawn for each voter v from a joint

probability distribution with a bounded and measurable density function, with W nonempty, bounded,

closed, and convex.

86 CHAPTER 5. ITERATIVE LOCAL VOTING

This utility function can be interpreted as follows: the decision-making problem is decomposable

into K sub-problems, and each voter v has an ideal point xkv and a weight wkv for each sub-problem

k, so that the voter’s disutility for a solution is the weighted sum of the Euclidean distances to the

ideal points in each sub-problems. Such utility functions may emerge in facility location problems,

for example, where voters have preferences on the locations of multiple facilities on a map. This

utility form is also the one most closely related to the existing literature on Directional Equilibria

and Quadratic Voting, in which preferences are linear. To recover the weighted linear preferences

case, set K = M , with each sub-space of dimension 1. In this case, the following holds:

Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Weighted Euclidean,

and voters correctly respond to query (1) according to either Model A or Model B. Then, ILV

with L2 neighborhoods converges with probability 1 to the societal optimal point.

The intuition for the result is as follows: as long as the neighborhood does not contain the ideal

point of the sampled voter, the correct response to query (1) under weighted Euclidean preferences

is to move the solution in the direction of the ideal point to the neighborhood boundary, which, as it

turns out, is the same as the direction of the gradient. Thus with radius rt, the effective movement is
∇fv(xt)
||∇fv(xt)||2 . With (normalized) weighted Euclidean utilities, ‖∇fv(xt)‖2 = 1 everywhere. As before,

even if the utilities were not normalized (i.e. not divided by ‖w‖2), the algorithm would converge

to the same point, as if utility functions were normalized.

5.3.2 Decomposable Utilities

Next consider the general class of decomposable utilities, motivated by the fact that the algorithm

with L∞ neighborhoods is of special interest since they are easy for humans to understand: one can

change each dimension up to a certain amount, independent of the others.

Definition 5.3.3. Decomposable utilities. A voter utility function is decomposable if there exists

concave functions fmv for m ∈ {1 . . .M} such that fv(x) =
∑M
m=1 f

m
v (xm).

If the utility functions for the voters are decomposable, then we can show that our algorithm

under L∞ neighborhoods converges to the vector of medians of voters’ ideal points on each dimension.

Suppose that hmX is the marginal density function of the random variable xmv , and let x̄m be the set

of medians of xmv . (By set of medians, we mean the set of points such that, on each dimension, the

mass of voters with ideal points above and below.)

Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are decomposable,

and voters respond to query (1) according to either Model A or Model B. Then, ILV with L∞
neighborhoods converges with probability 1 to a point in the set of medians x̄.

Although simply eliciting each agent’s optimal solution and computing the vector of median

allocations on each dimension is a viable approach in the case of decomposable utilities, deciding

an optimal allocation across multiple dimensions is a more challenging cognitive task than deciding

5.3. CONVERGENCE ANALYSIS 87

whether one wants to increase or decrease each dimension relative to the current solution (see

Section 5.5.2 for experimental evidence). In fact, in this case, the algorithm can be run separately

for each dimension, so that each voter expresses her preferences on only one dimension, drastically

reducing the cognitive burden of decision-making on the voter, especially in high dimensional settings

like budgeting.

5.3.3 Equivalence to Directional Equilibrium

As discussed in Section 5.2, our algorithm, with L2-norm neighborhoods, is related to an algorithm,

NGA, to find what are called Directional Equilibria in literature. Prior work mostly focuses on the

properties of the fixed point, with discussion of the proposed algorithm limited to simulations. We

show that with the radius decreasing as O(1
t), the algorithm indeed finds directional equilibria in

the following sense: if under a few conditions a trajectory of the algorithm converges to a point,

then that point is a directional equilibrium.

Theorem 5.3.3. Suppose that C1, C2, and C3 are satisfied, and let G(x) , Ev
[
∇fv(x)
‖∇fv(x)‖2

]
. Sup-

pose, G(x) is uniformly continuous, L2 movement norm constraints are used, and voters move

according to Model B. If a trajectory {x}∞t=1 of the algorithm converges to x∗, i.e. xt → x∗, then

x∗ is a directional equilibrium, i.e. G(x∗) = 0.

The proof is in the appendix. It relies heavily on the continuity assumption: if a point x is not

a directional equilibrium, then the algorithm with step sizes O(1
t) will with probability 1 leave any

small region surrounding x: the net drift of the voter movements is away from the region. We note

that the necessary assumptions hold for all utility functions for which convergence holds, using the

L2 norm algorithm (e.g. weighted Euclidean utilities). It is further possible to characterize other

utility functions for which the equivalence holds: with appropriate conditions on the distribution of

voters and how f differs among voters, the conditions on G can be met.

We further conjecture that even under voter Model A, if Algorithm 4 converges, the fixed point

is a Directional Equilibrium. Note that as rt → 0, fv(y) can be linearly approximated by the first

term of the Taylor series expansion around x, for y ∈ {s : ||s− x||2 ≤ rt}. Then, to maximize fv(y)

in the region, if the region does not contain xv voter v chooses y∗ s.t. y∗ − x ≈ rt
∇f(x)
||∇f(x)||2 , i.e.,

the voter moves the solution approximately in the direction of her gradient to the neighborhood

boundary.

A single step of our algorithm with L2 neighborhoods is similar to Quadratic Voting (Lalley and

Weyl, 2015; Tideman and Plassmann, 2016) for the same reason. Independently of our work, Ben-

jamin et al. (2017) formalize the relationship between the Normalized Gradient Ascent mechanism

and Quadratic Voting.

88 CHAPTER 5. ITERATIVE LOCAL VOTING

5.4 Experiments with Budgets

We built a voting platform and ran a large scale experiment, along with several extensive pilots,

on Amazon Mechanical Turk (https://www.mturk.com). Over 4,000 workers participating in total

counting pilots and the final experiment, with over 2,000 workers participating in the final experi-

ment. The design challenges we faced and voter feedback we received provide important lessons for

deploying such systems in a real-world setting.

First we present a theoretical model for our setting. We consider a budget allocation problem on

M items, where the items may include both expenditures and incomes. One possibility is to define

X as the space of feasible allocations, such as those below a spending limit, and to run the algorithm

as defined, with projections. However, in such cases, it may be difficult to theorize about how voters

behave; e.g. if voters knew their answers would be projected onto a budget balanced set, they may

respond differently.

Rather, we consider an unconstrained budget allocation problem, one in which a voter’s utility

includes a term for the budget deficit. Let E ⊆ {1 . . .M}, I = {1 . . .M} \ E be the expenditure and

income items, respectively. Then the general budget utility function is fv(x) = gv(x)− d(
∑
e∈E x

e−
∑
i∈I x

i), where d is an increasing function on the deficit.

For example, suppose a voter’s disutility was proportional to the square of the budget deficit

(she especially dislikes large budget deficits); then, this term adds complex dependencies between the

budget items. In general, nothing is known about convergence of Algorithm 2 with such utilities, as

the deficit term may add complex dependencies between the dimensions. However, if the voter utility

functions are decomposable across the dimensions and L∞ neighborhoods used, then the results of

Section 5.3.2 can be applied. We propose the following class of decomposable utility functions for

the budgeting problem, achieved by assuming that the cost for the deficit is linear, and call the class

“decomposable with a linear cost for deficit,” or DLCD.

Definition 5.4.1. Let fv(x) be DLCD if

fv(x) =

M∑

m=1

fmv (xm)− wv
(∑

e∈E
xe −

∑

i∈I
xi

)
,

where fmv is a concave function for each m and wv ∈ R+.

In the experiments discussed below in the budget setting, ILV consistently and robustly converges

with L∞ norm neighborhoods. Further, it approximately converges to the medians of the optimal

solutions (which are elicited independently), as theorized in Section 5.3.2. Such a convergence

pattern suggests the validity of the DLCD model, though we do not formally analyze this claim.

https://www.mturk.com

5.4. EXPERIMENTS WITH BUDGETS 89

5.4.1 Experimental Setup

We asked voters to vote on the U.S. Federal Budget across several of its major categories: National

Defense; Healthcare; Transportation, Science, & Education; and Individual Income Tax (Note that

the US Federal Government cannot just decide to set tax receipts to some value. We asked workers

to assume tax rates would be increased or decreased at proportional rates in hopes of affecting

receipts.)

This setting was deemed the most likely to be meaningful to the largest cross-section of workers

and to yield a diversity of opinion, and we consider budgets a prime application area in general. The

specific categories were chosen because they make up a substantial portion of the budget and are

among the most-discussed items in American politics. We make no normative claims about running

a vote in this setting in reality, and Participatory Budgeting has historically been more successful

at a local level.

One major concern was that with no way to validate that a worker actually performed the task

(since no or little movement is a valid response if the solution presented to the worker was near

her ideal budget), we may not receive high-quality responses. This issue is especially important

in our setting because a worker’s actions influence the initial solution future workers see. We thus

restricted the experiment to workers with a high approval rate and who have completed over 500

tasks on Mechanical Turk (MTurk). Further, we offered a bonus to workers for justifying their

movements well, and more than 80% of workers qualified, suggesting that we also received high-

quality movements. The experiment was restricted to Americans to best ensure familiarity with the

setting. Turkprime (https://www.turkprime.com) was used to manage postings and payment.

5.4.2 Experimental Parameters

Our large scale experiment included 2,000 workers and ran over a week in real-time. Participants

of any of the pilots were excluded. We tested the L1,L2, and L∞ mechanisms, along with a “full

elicitation” mechanism in which workers reported their ideal values for each item, and a “weight” in

[0, 10] indicating how much they cared about the actual spending in that item being close to their

stated value.

To test repeatability of convergence, each of the constrained mechanisms had three copies, given

to three separate groups of people. Each group consisted of two sets with different starting points,

with each worker being asked to vote in each set in her assigned group. Each worker only participates

as part of one group, and cannot vote multiple times.

We used a total of three different sets of starting points across the three groups, such that each

group shared one set of starting points with each of the other two groups. This setup allowed testing

for repeatability across different starting points and observing each worker’s behavior at two points.

Workers in one group in each constrained mechanism type were also asked to do the full elicitation

after submitting their movements for the constrained mechanism, and such workers were paid extra.

https://www.turkprime.com

90 CHAPTER 5. ITERATIVE LOCAL VOTING

These copies, along with the full elicitation, resulted in 10 different mechanism instances to which

workers could be allocated, each completed by about 200 workers.

To update the current point, we waited for 10 submissions and then updated the point to their

average. This averaging explains the step-like structure in the convergence plots in the next section.

The radius was decreased approximately every 60 submissions, rt u r0
dt/60e . The averaging and slow

radius decay rate were implemented in response to observing in the pilots that the initial few voters

with a large radius had a disproportionately high impact, as there were not enough subsequent voters

to recover from large initial movements away from an eventual fixed point (though in theory this

would not be a problem given enough voters). We note that the convergence results for stochastic

subgradient methods trivially extend to cover these modifications: the average movement over a

batch of submissions starting at the same point is still in expectation a subgradient, and the stepped

radius decrease still meets the conditions for valid step-sizes.

5.4.3 User Experience

Figure 5.1: UI Screenshot for 1 set of the L2 Mechanism

As workers arrived, they were randomly assigned to a mechanism instance. They had a roughly

equal probability of being assigned to each instance, with slight deviations in case an instance

was “busy” (another user was currently doing the potential 10th submission before an update of

the instance’s current point) and to keep the number of workers in each instance balanced. Upon

starting, workers were shown mechanism instructions. We showed the instructions on a separate page

so as to be able to separately measure the time it takes to read & understand a given mechanism,

and the time it takes to do it, but we repeated the instructions on the actual mechanism page as

well for reference.

5.5. RESULTS AND ANALYSIS 91

On the mechanism page, workers were shown the current allocation for each of the two sets in

their group. They could then move, through sliders, to their favorite allocation under the movement

constraint. We explained the movement constraints in text and also automatically calculated for

them the number of “credits” their current movements were using, and how many they had left.

Next to each budget item, we displayed the percentage difference of the current value from the

2016 baseline federal budget, providing important context to workers (The 2016 budget estimate

was obtained from http://federal-budget.insidegov.com/l/119/2016-Estimate and http://

atlas.newamerica.org/education-federal-budget). We also provided short descriptions of what

goes into each budget item as scroll-over text. The resulting budget deficit and its percent change

were displayed above the sliders, assuming other budget items are held constant.

For the full elicitation mechanism, workers were asked to move the sliders to their favorite points

with no constraints (the sliders went from $0 to twice the 2016 value in that category), and then

were asked for their “weights” on each budget item, including the deficit. Figure 5.1 shows part of

the interface for the L2 mechanism, not including instructions, with similar interfaces for the other

constrained mechanisms. The full elicitation mechanism additionally included sliders for items’

weights. On the final page, workers were asked for feedback on the experiment.

A full walk-through of the experiment with screenshots and link to an online demo is available in

the Appendix. We plan on posting the data, including feedback. In general, workers seemed to like

the experiment, though some complained about the constraints, and others were generally confused.

Some expressed excitement about being asked their views in an innovative manner and suggested

that everyone could benefit from participating as, at the least, a thought exercise. The feedback

and explanations provided by workers were much longer than we anticipated, and they convince us

of the procedure’s civic engagement benefits.

5.5 Results and Analysis

We now discuss the results of our experiments.

5.5.1 Convergence

One basic test of a voting mechanism is whether it produces a consistent and unique solution, given a

voting population and their behaviors. If an election process can produce multiple, distinct solutions

purely by chance, opponents can assail any particular solution as a fluke and call for a re-vote. The

question of whether the mechanisms consistently converge to the same point thus must be answered

before analyzing properties of the equilibrium point itself. In this section, we show that the L2 and

L1 algorithms do not appear to converge to a unique point, while the L∞ mechanism converges to

a unique point across several initial points and with distinct worker populations.

The solutions after each voter for each set of starting points, across the 3 separate groups of

http://federal-budget.insidegov.com/l/119/2016-Estimate
http://atlas.newamerica.org/education-federal-budget
http://atlas.newamerica.org/education-federal-budget

92 CHAPTER 5. ITERATIVE LOCAL VOTING

200
300
400
500
600
700
800

700
800
900

1000
1100
1200
1300

100
200
300
400
500
600
700

1200
1300
1400
1500
1600
1700
1800

0 50 100 150 200
200
400
600
800

1000
1200

Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

$
(B

ill
io

ns
)

L1 Group 1, Set 0
L1 Group 1, Set 1

L1 Group 2, Set 0
L1 Group 2, Set 1

L1 Group 3 , Set 0
L1 Group 3 , Set 1

Ideal Pts. median

(a) L1

Figure 5.2: Solution over time for each mechanism type

people for each constrained mechanism are shown in Figure 5.2. Each plot shows all the trajectories

with the given mechanism type, along with the median of the ideal points elicited from the separate

voters who only performed the full elicitation mechanism. Observe that the three mechanisms have

remarkably different convergence patterns. In the L1 mechanism, not even the sets done by the

same group of voters (in the same order) converged in all cases. In some cases, they converged for

some budget items but then diverged again. In the L2 mechanism, sets done by the same voters

starting from separate starting points appear to converge, but the three groups of voters seem to

have settled at two separate equilibria in each dimension. Under the L∞ neighborhood, on the other

hand, all six trajectories, performed by three groups of people, converged to the same allocation

very quickly and remained together throughout the course of the experiment. Furthermore, the

final points, in all dimensions except Healthcare, correspond almost exactly to the median of values

elicited from the separate set of voters who did only the full elicitation mechanism. For Healthcare,

the discrepancy could result from biases in full elicitation (see Section 5.5.2), though we make no

definitive claims. These patterns shed initial insight on how the use of L2 constraints may differ

from theory in prior literature and offer justification for the use of DLCD utility models and the L∞
constrained mechanism.

One natural question is whether these mechanisms really have converged, or whether if we let

5.5. RESULTS AND ANALYSIS 93

200
300
400
500
600
700
800

700
800
900

1000
1100
1200
1300

100
200
300
400
500
600
700

1200
1300
1400
1500
1600
1700
1800

0 50 100 150 200
200
400
600
800

1000
1200

Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

$
(B

ill
io

ns
)

L2 Group 1, Set 0
L2 Group 1, Set 1

L2 Group 2, Set 0
L2 Group 2, Set 1

L2 Group 3, Set 0
L2 Group 3, Set 1

Ideal Pts. median

(b) L2

200
300
400
500
600
700
800

700
800
900

1000
1100
1200
1300

100
200
300
400
500
600
700

1200
1300
1400
1500
1600
1700
1800

0 50 100 150 200
200
400
600
800

1000
1200

Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

$
(B

ill
io

ns
)

L∞ Group 1, Set 0
L∞ Group 1, Set 1

L∞ Group 2, Set 0
L∞ Group 2, Set 1

L∞ Group 3, Set 0
L∞ Group 3, Set 1

Ideal Pts. median

(c) L∞

Figure 5.2: (Continued) Solution over time for each mechanism type

94 CHAPTER 5. ITERATIVE LOCAL VOTING

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0 Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

∣ ∣ ∣ ∣ ∣
1

m
in

(
t
,N

)

∑
t s
=

m
a
x
(
0
,t
−
N

)

x
s
−
x
s
−

1
r
t

∣ ∣ ∣ ∣ ∣
L1 Group 1, Set 0
L1 Group 1, Set 1

L1 Group 2, Set 0
L1 Group 2, Set 1

L1 Group 3 , Set 0
L1 Group 3 , Set 1

(a) L1

Figure 5.3: Net normalized movement in window of N = 30

the experiment continue, the results would change. This question is especially salient for the L2

trajectories, where trajectories within a group of people converged to the same point, but trajectories

between groups did not. Such a pattern could suggest that our results are a consequence of the radius

decreasing too quickly over time, or that the groups had, by chance, different distributions of voters

which would have been corrected with more voters. However, we argue that such does not seem to

be the case, and that the mechanism truly found different equilibria.

We can test whether the final points for each trajectory are stable by checking the net movement

in a window, normalized by each voter’s radius, i.e. 1
N

∑t
s=t−N

xs−xs−1

rs
, for some N . If voters in a

window are canceling each other’s movements, then this value would go to 0, and the algorithm would

be stable even if the radius does not decrease. The notion is thus robust to apparent convergence

just due to decreasing radii. The net movement normalized in a sliding window of 30 voters, for

each dimension and mechanism, is shown in Figure 5.3. It seems to almost die down for almost all

mechanisms and budget items, except for a few cases which do not change the result. We conclude

it likely that the mechanisms have settled into equilibria which are unlikely to change given more

voters.

5.5. RESULTS AND ANALYSIS 95

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0 Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

∣ ∣ ∣ ∣ ∣
1

m
in

(
t
,N

)

∑
t s
=

m
a
x
(
0
,t
−
N

)

x
s
−
x
s
−

1
r
t

∣ ∣ ∣ ∣ ∣

L2 Group 1, Set 0
L2 Group 1, Set 1

L2 Group 2, Set 0
L2 Group 2, Set 1

L2 Group 3, Set 0
L2 Group 3, Set 1

(b) L2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0 Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Iteration

∣ ∣ ∣ ∣ ∣
1

m
in

(
t
,N

)

∑
t s
=

m
a
x
(
0
,t
−
N

)

x
s
−
x
s
−

1
r
t

∣ ∣ ∣ ∣ ∣

L∞ Group 1, Set 0
L∞ Group 1, Set 1

L∞ Group 2, Set 0
L∞ Group 2, Set 1

L∞ Group 3, Set 0
L∞ Group 3, Set 1

(c) L∞

Figure 5.3: (Continued) Net normalized movement in window of N = 30.

96 CHAPTER 5. ITERATIVE LOCAL VOTING

5.5.2 Understanding Voter Behavior

A mechanism’s practical impact depends on more than whether it consistently converges, however.

We now turn our attention to understanding how voters behave under each mechanism and whether

we can learn anything about their utility functions from that behavior. We find that voters under-

stood the mechanisms but that their behaviors suggest large indifference regions, and that the full

elicitation scheme is susceptible to biases that can skew the results.

Voter understanding of mechanisms

One important question is whether, given very little instruction on how to behave, voters understand

the mechanisms and act approximately optimally under their (unknown to us) utility function. This

section shows that the voters behavior follows what one would expect in one important respect: how

much of one’s movement budget the voter used on each dimension, given the constraint type.

Regardless of the exact form of the utility function, one would expect that, in the L1 constrained

mechanism, a voter would use most of her movement credits in the dimension about which she cares

most. In fact, in either the Weighted Euclidean preferences case (and with ‘sub-space’ being a single

dimension) or with a small radius with L1 constraints, a voter would move only on one dimension.

With L2 constraints, one would expect a voter to apportion her movement more equally because she

pays an increasing marginal cost to move more in one dimension (people were explicitly informed

of this consequence in the instructions). Under the Weighted Euclidean preferences model with L2

constraints, a voter would move in each dimension proportional to her weight in that dimension.

Finally, with L∞ constraints, a voter would move, in all dimensions in which she is not indifferent, to

her favorite point in the neighborhood for that dimension (most likely an endpoint), independently

of other dimensions. One would thus expect a more equal distribution of movements.

Figure 5.4 shows the average movement (as a fraction of the voter’s total movement) by each

voter for the dimension she moved most, second, third, and fourth, respectively, for each constrained

mechanism. We reserve discussion of the full elicitation weights for Section 5.5.2. The movement

patterns indicate that voters understood the constraints and moved accordingly – with more equal

movements across dimensions in L2 than in L1, and more equal movements still in L∞. We dig deeper

into user utility functions next, but can conclude that, regardless of their exact utility functions,

voters responded to the constraint sets appropriately.

Large indifference regions

Although it is difficult to extract a voter’s full utility function from their movements, the separability

of dimensions (except through the deficit term) under the L∞ constraint allows us to test whether

voters behave according to some given utility model in that dimension, without worrying about the

dependency on other dimensions.

5.5. RESULTS AND ANALYSIS 97

First Second Third Fourth
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Full Elicitation Weights L1 L2 L∞

Ranking of dimensions by movement for each voter

M
ov

em
en

t
as

fr
ac

ti
on

of
to

ta
lm

ov
em

en
t

Figure 5.4: Average movement in dimension over total movement for each voter, with dimensions
sorted

Figure 5.5 shows, for the L∞ mechanism, a histogram of the movement on a dimension as a

fraction of the radius (we find no difference between dimensions here). Note that a large percentage

of voters moved very little on a dimension, even in cases where their ideal point in that dimension

was far away (defined as being unreachable under the current radius). This result cannot be ex-

plained away by workers clicking through without performing the task: almost all workers moved

at least one dimension, and, given that a worker moved in a given dimension, it would not explain

smaller movements being more common than larger movements. That this pattern occurs in the

L∞ mechanism is key – if a voter feels any marginal disutility in a dimension, she can move the

allocation without paying a cost of more limited movement in other dimensions. We conclude that,

though voters may share a single ideal point for a dimension when asked for it, they are in fact

relatively indifferent over a potentially large region – and their actions reflect so.

We further analyze this claim in Appendix Section D.2, looking at the same distribution of

movement but focusing on workers who provided a text explanation longer than (and shorter than,

separately) the median explanation of 197 characters. (We assume that the voters who invested time

in providing a more thorough explanation than the average worker also invested time in moving the

sliders to a satisfactory point, though this assumption cannot be validated.) Though there are some

differences (those who provide longer explanations also tend to use more of their movement), the

general pattern remains the same; only about 40% of workers who provided a long explanation and

were far away from their ideal point on a dimension used the full movement budget. This pattern

suggests that voters are relatively indifferent over large regions.

Furthermore, this lack of movement is correlated with a voter’s weights when she was also asked

98 CHAPTER 5. ITERATIVE LOCAL VOTING

to do the full elicitation mechanism. Conditioned on being far from her ideal point, when a voter

ranked an item as one of her top two important items (not counting the deficit term), she moved

an average of 74% of her allowed movement in that dimension; when she ranked an item as one of

least two important items, she moved an average of 61%, and the difference is significant through

a two sample t-test with p = .013. We find no significant difference in movement within the top

two ranked items or within the bottom two ranked items. This connection suggests that one can

potentially determine which dimensions a voter cares about by observing these indifference regions

and movements, even in the L∞ constrained case. One caveat is that the differences in effects are not

large, and so at the individual level inference of how much an individual cares about one dimension

over another may be noisy. On the aggregate, however, such determination may prove useful.

Furthermore, we note that while such indifference regions conflict with the utility models un-

der which the L2 constraint mechanism converges in theory, it fits within the DLCD framework

introduced in Section 5.4.

0.0 0.2 0.4 0.6 0.8 1.0

Movement as fraction of possible movement

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
is

to
gr

am
pd

f

All Near Ideal Pt Far from Ideal Pt

Figure 5.5: Fraction of possible movement in each dimension in L∞, conditioned on distance to ideal
pt. The ‘All’ condition contains data from all three L∞ instances, whereas the others only from the
instance that also did full elicitation.

Mechanism time

In this section, we note one potential problem with schemes that explicitly elicit voter’s optimal

solutions – for instance, to find the component-wise median – as compared to the constrained

elicitation used in ILV: it seems to be cognitively difficult for voters. In Figure 5.6, the median time

per page, aggregated across each mechanism type, is shown. The “Mechanism” time includes a single

user completing both sets in each of the constrained mechanism types, but not does include the time

5.5. RESULTS AND ANALYSIS 99

Welcome Page Instructions Mechanism Feedback
0

50

100

150

200

250
Full Elicitation L2 L1 L∞

Page

T
im

e
(S

ec
on

ds
)

Figure 5.6: Median time per page

to also do the extra full elicitation task in cases where a voter was asked to do both a constrained

mechanism and the full elicitation. The full elicitation bars include only voters who did only the full

elicitation mechanism, and so the bars are completely independent. On average, it took longer to

do the full elicitation mechanism than it took to do two sets of any of the constrained mechanisms,

suggesting some level of cognitive difficulty in articulating one’s ideal points and weights on each

dimension – even though understanding what the instructions are asking was simple, as demonstrated

by the shorter instruction reading time for the full elicitation mechanism. The L∞ mechanism took

the least time to both understand and do, while the L2 mechanism took the longest to do, among

the constrained mechanisms.

This result is intuitive: it is easier to move each budget item independently when the maximum

movement is bounded than it is to move the items when the sum or the sum of the changes squared

is bounded (even when these values are calculated for the voter). In practice, with potentially tens

of items on which constituents are voting, these relative time differences would grow even larger,

potentially rendering full elicitation or L2 constraints unpalatable to voters.

One potential caveat to this finding is that the Full Elicitation mechanism potentially provides

more information than do the other mechanisms. From a polling perspective, it is true that more

information is provided from full elicitation – one can see the distribution of votes, the disagreement,

and correlation across issues, among other things. However, from a voting perspective, in which the

aggregation (winner) is the only thing reported, it is not clear that this extra information is useful.

Further, much of this information that full elicitation provides can reasonably be extracted from

movements of voters, especially the movements of those who are given a starting point close to the

eventual equilibrium.

100 CHAPTER 5. ITERATIVE LOCAL VOTING

UI biases

We now turn our attention to the question of how workers behaved under the full elicitation mech-

anism and highlight some potential problems that may affect results in real deployments. Fig-

ures 5.7 and 5.8 show the histogram of values and weights, respectively, elicited from all workers

who did the full elicitation mechanism. Note that in the histogram of values, in every dimension, the

largest peak is at the slider’s default value (at the 2016 estimated budget), and the histograms seem

to undergo a phase shift at that peak, suggesting that voters are strongly anchored at the slider’s

starting value. This anchoring could systematically bias the medians of the elicited values.

A similar effect occurs in eliciting voter weights on each dimension. Observe that in Figure 5.4 the

full elicitation weights appear far more balanced than the weights implied by any of the mechanisms

(for the full elicitation mechanism, the plot shows the average weight over the sum of the weights

for each voter). From the histogram of full elicitation weights, however, we see that this result is

a consequence of voters rarely moving a dimension’s weight down from the default of 5, but rather

moving others up.

One potential cause of this behavior is that voters might think that putting high weights on each

dimension would mean their opinions would count more, whereas in any aggregation one would either

ignore the weights (calculate the unweighted median) or normalize the weights before aggregating.

In future work, one potential fix could be to add a “normalize” button for the weights, which would

re-normalize the weights, or to automatically normalize the weights as voters move the sliders.

These patterns demonstrate the difficulty in eliciting utilities from voters directly; even asking

voters how much they care about a particular budget item is extremely susceptible to the user

interface design. Though such anchoring to the slider default undoubtedly also occurs in the L∞
constrained mechanism, it would only slow the rate of convergence, assuming the anchoring affects

different voters similarly. These biases can potentially be overcome by changing the UI design, such

as by providing no default value through sliders. Such design choices must be carefully thought

through before deploying real systems, as they can have serious consequences.

5.6 Conclusion

We evaluate a natural class of iterative algorithms for collective decision-making in continuous spaces

that makes practically reasonable assumptions on the nature of human feedback. We first introduce

several cases in which the algorithm converges to the societal optimum point, and others in which

the algorithm converges to other interesting solutions. We then experimentally test such algorithms

in the first work to deploy such a scheme. Our findings are significant: even with theoretical backing,

two variants fail the basic test of being able to give a consistent decision across multiple trials with

the same set of voters. On the other hand, a variant that uses L∞ neighborhoods consistently leads

to convergence to the same solution, which has attractive properties under a likely model for voter

5.6. CONCLUSION 101

0
20
40
60
80

100
120
140

0
20
40
60
80

100
120
140
160

0

50

100

150

200

250

0

50

100

150

200

−500 0 500 1000 1500 2000 2500
0

20
40
60
80

100
120
140
160 Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Full Elicitation Value (Billions of $)

N
um

be
r

of
V

ot
er

s

Figure 5.7: Histogram of values from all full elicitation data. The red vertical lines indicate each
slider’s default value (at the 2016 estimated budget).

0
20
40
60
80

100
120

0
20
40
60
80

100
120

0
20
40
60
80

100
120
140

0
20
40
60
80

100
120
140
160

0 2 4 6 8 10
0

20
40
60
80

100
120
140
160 Deficit

Income Tax

Transportation, Science, & Education

Healthcare

Defense

Full Elicitation Weight

N
um

be
r

of
V

ot
er

s

Figure 5.8: Histogram of weights from all full elicitation data. The red vertical lines indicate the
sliders’ default value of 5.

preferences suggested by this convergence. We also make certain observations about other properties

of user preferences – most saliently, that they have large indifferences on dimensions about which

they care less.

102 CHAPTER 5. ITERATIVE LOCAL VOTING

In general, this work takes a significant step within the broad research agenda of understanding

the fundamental limitations on the quality of societal outcomes posed by the constraints of human

feedback, and in designing innovative mechanisms that leverage this feedback optimally to obtain

the best achievable outcomes.

Chapter 6

Who is in Your Top Three?

Optimizing Learning in Elections

with Many Candidates

6.1 Introduction

Elections and opinion polls with many candidates and multiple winners are common. In participatory

budgeting (PB), for example, people directly determine a part of the government’s budget (Alós-

Ferrer and Granić, 2012; Goel et al., 2016). These elections often contain many candidate projects

(up to 70, cf. Gelauff et al. (2018)) and only a few thousand voters, with potentially millions of

dollars on the line (Public Agenda, 2016). Similarly, polls may compare tens of candidates and yet

only sample hundreds of voters.

Unfortunately, the number of voters required to recover the asymptotic ranking or set of winners

often scales, potentially exponentially, with the number of candidates (Caragiannis and Micha, 2017).

Thus with many candidates, it is essential to use a voting mechanism that most efficiently elicits

information from each voter.

In this work, we analyze positional scoring rules (de Borda, 1781; Young, 1975), mechanisms in

which each position in each voter’s personal ranking maps to a score given to the candidate that

This chapter is joint with Lodewijk Gelauff, Sukolsak Sakshuwong, and Ashish Goel. Published at the AAAI
Conference on Human Computation and Crowdsourcing (HCOMP), in 2019 (Garg et al., 2019a). We thank our
Participatory Budgeting city partners, especially those in Boston, Durham, and Rochester. We also thank anonymous
reviewers for their comments. This work was supported in part by the Stanford Cyber Initiative, the Office of Naval
Research grant N00014-19-1-2268, and National Science Foundation grants 1544548 and 1637397.

103

104 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

occupies that position. We focus on the special cases of such rules implied by K-Approval elicitation,

in which each voter is asked to select their favorite K candidates, as they are the most commonly

used such mechanisms in practice. Section 6.3 formalizes our model. Then:

Section 6.4. For a given election, we show how the particular scoring rule used affects the rate at

which the final outcome (asymptotic in the number of voters) is learned. These rates, based on

large deviation bounds, extend and tighten the results of Caragiannis and Micha (2017), and

are precise enough to determine, for example, which of 3-Approval and 4-Approval is better

in a particular context. We focus on the goals of learning both a ranking over all candidates

and identifying a subset of winners.

Section 6.5.1. Leveraging these rates, we study when randomization between scoring rules can

improve learning, extending previous results to general positional scoring rules, the goal of

selecting a set of winners, and arbitrary noise models. In particular, we find that randomizing

between scoring rules can never speed up learning, for arbitrary noise models. This result

differs from case when one is restricted to K-Approval mechanisms.

Section 6.5.2. For the Mallows model, we study how the optimal K in K-Approval scales with the

noise parameter, the number of candidates, and the number of winners desired. We find that,

in contrast to design choices made in practice, one should potentially ask voters to identify up

to their favorite half of candidates, even if the goal is to identify a single winner.

Section 6.6. We apply our approach to experimental ballots attached to real participatory budget-

ing elections across several US cities, as well as other ranking data from a range of domains.

We find that the exact mechanism used matters: in one setting, for example, asking voters to

identify their favorite candidate results in only a 80% chance of identifying the best candidate

after 400 voters, while asking voters for their favorite 2 candidates identifies the same best

candidate 99.9% of the time. Extending our theoretical insights, we find that, historically

across elections, K has been set too low for effective learning. We also identify examples in

which randomization among K-Approval mechanisms would have sped up learning.

Our work bridges a gap between coarse theoretical analyses of voting rules and the fine-grained

design questions a practitioner wishes to answer. Proofs are in the Appendix.

6.2 Related work

Our work is part of several strands of research on mechanisms that elicit peoples’ preferences.

Aggregating voter rankings has a long history (Copeland, 1951; de Borda, 1781; Kemeny, 1959;

marquis de Condorcet, 1785; Young, 1988).

6.2. RELATED WORK 105

Learning properties of voting rules Most related are works that study the learning properties

of voting rules, assuming that a “true” ranking exists. One approach is to specify a noise model

under which voter preferences are drawn (e.g., Mallows, Plackett-Luce) and then derive error rates

by the number of voters for maximum likelihood or other estimators under the model (Chierichetti

and Kleinberg, 2014; de Weerdt et al., 2016; Guiver and Snelson, 2009; Lu and Boutilier, 2011;

Maystre and Grossglauser, 2015; Procaccia and Shah, 2015; Zhao et al., 2016).

Caragiannis et al. (2013) ask similar questions to us: under what voter noise models do certain

voting rules asymptotically recover the true underlying ranking, and how quickly do they do so. They

define a class of voting rules and voter noise models under which a “true” ranking of candidates

is eventually recovered. They further show that for a subset of this class (that does not contain

positional scoring rules) and under the Mallows model, only a number of voters that is logarithmic

in the number of candidates is required, where each voter provides a full ranking. Lee et al. (2014)

develop an algorithm that can approximate the Borda rule, given a number of comparisons by each

voter that is logarithmic in the number of candidates.

Most similar is that of Caragiannis and Micha (2017). They show that under the Mallows model,

K-Approval with any fixed K takes exponentially many voters (in the number of candidates) to

recover the underlying ranking; on the other hand, K-approval with K chosen uniformly at random

for each voter takes only a polynomial number of voters.

These works provide order estimates for the learning rate, asymptotic in the number of candidates;

fine-grained differentiation between different rules or K-Approval mechanisms for a given election is

not possible. We provide the latter and show that it matters.

Other approaches to comparing mechanisms Many works take an axiomatic and computa-

tional approach, comparing mechanisms that may produce different outcomes even given asymptot-

ically many votes (Aziz et al., 2015, 2017; Caragiannis et al., 2017; Elkind et al., 2017; Faliszewski

and Talmon, 2018; Fishburn, 1978; Fishburn and Gehrlein, 1976; Lackner and Skowron, 2018a,b;

Ratliff, 2003; Staring, 1986; Tataru and Merlin, 1997; Wiseman, 2000). Caragiannis et al. (2019) for

example show how to find a scoring rule that most agrees with a given partial ground truth ranking.

In contrast, we compare mechanisms’ learning rates under a condition (in Section 6.3.2) in which

they produce the same asymptotic outcome.

Benade et al. (2018) and Gelauff et al. (2018) experimentally compare different mechanisms

across several dimensions, including ease of use and consistency with another mechanism; the latter

leverages data from a participatory budgeting election at a university.

Large deviation analysis of elicitation mechanisms Theoretically, we leverage large deviation

rates and Chernoff bounds to derive how quickly a given scoring rule learns its outcome; see work of

Dembo and Zeitouni (2010) for an introduction to large deviations. This work is thus conceptually

similar to work on elicitation design for rating systems, discussed in Part II. There, we derive large

106 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

deviation-based learning rates that depend on the questions that are asked to buyers as they review

an item, where the goal is to accurately rank items; they further run an experiment on an online

labor platform. In that setting, however, buyers rate a single item, and mechanisms are distinct

based on the behavior they induce; in this work, voters see all the candidates and provide a partial

ordering, and different designs (e.g., 3-Approval vs 4-Approval) constrain the types of orderings

voters can provide.

6.3 Model

We now present our model and a condition under which different positional scoring rules induce the

same asymptotic outcome.

6.3.1 Model primitives

We begin with the model primitives: candidates and voters, the election goal, and elicitation and

aggregation.

Candidates and Voters There is a set of M candidates C = {1, . . . ,M}, typically indexed by

i, j ∈ C. There are N voters V = {1, . . . , N}. Each voter v ∈ V has a strict ranking of candidates

σv, drawn independently and identically from probability mass function over strict rankings F (σ).

Let i �σ j denote that i is preferred over j in σ, and σ(i) = k denote that candidate i is in the kth

position in σ.

A special case for F is the Mallows model (Mallows, 1957), in which there is a “true” societal

preference σ∗ from which each voter’s ranking is a noisy sample. In particular,

FMallows(σ) ∝ φd(σ,σ∗)

Where d(σ, σ∗) is the Kendall’s τ distance between rankings σ, σ∗, and φ ∈ [0, 1] is the noise param-

eter: the smaller it is, the more concentrated F is around σ∗.

Election goal We assume that the goal G is to divide the candidates into T disjoint, ordered tiers

G = {C1, . . . , CT }, such that C = ∪Tt=1Ct, where candidate i ∈ Cs is deemed societally preferable

over j ∈ Ct if s < t. The size of each tier is fixed before the election. For example, recovering a

strict ranking over all candidates corresponds to G = {C1, . . . , CM}, where |Ct| = 1. Alternatively,

identifying a set of W winners, without distinguishing amongst the winners, corresponds to G =

{C1, C2}, with |C1| = W .

In the main text and especially the empirics, we will focus on the task of selecting W winners

as it is the most common task in practice. However, this general notation allows comparison of the

6.3. MODEL 107

learning properties of different settings, and for example asking how much more expensive is it (in

terms of the number of voters needed) to identify a strict ranking as opposed to just a set of winners.

Elicitation and Aggregation Voters vote using an elicitation mechanism. Their votes are then

aggregated using a positional scoring rule, parameterized as β : {1, . . . ,M} 7→ R. We consider the

following mechanisms:

K-Ranking Voter v ranks her favorite K candidates, i.e., reveals {(i, σv(i)) : σv(i) ≤ K}. Candi-

date i then receives a score siv = β(σv(i)) if ranked, 0 otherwise. For example, β(k) = M − k
for the Borda count.1

K-Approval Voter v selects her favorite K candidates, i.e., reveals {i : σv(i) ≤ K}. A candidate

receives a score siv = 1 for being selected, 0 otherwise.

β encodes both elicitation and aggregation. For example, K-Approval is equivalent to K-ranking

with score function β(k) = I[k ≤ K]. Furthermore, note that given K-ranking data, one can simulate

K ′-ranking elicitation for K ′ ≤ K with a β s.t. β(k) = 0 for k > K ′.

The scoring rule β is a design choice made by the election organizer, and so we will refer to

β as the election’s design. We restrict ourselves to non-constant, non-increasing scoring rules, i.e.,

β ∈ B = {β : ∀k < ` ∈ 1, . . . ,M, β(k) ≥ β(`), and ∃k < `, β(k) > β(`)}.

Outcome After N voters, candidate i’s cumulative score is sNi = 1
N

∑N
v=1 siv. Candidates are

ranked in descending order of score, to form ranking σN , with ties broken uniformly at random. We

denote the outcome after N voters, corresponding to the goal G, as ON (M,F, β,G). For example,

for the goal of selecting W winners, ON (M,F, β,G) is simply the top W candidates in σN . When

(M,F, β,G) is clear from context, we will refer to the outcome as ON .

As the number of voters N → ∞, candidate scores sNi → EF [siv] , si by the law of large

numbers; when such expected scores are distinct, i.e., si 6= sj for i 6= j, then σN → σ∗ for some

ranking σ∗. However, note that there may exist an asymptotic outcome ON → O∗ even without an

asymptotic ranking σN → σ∗, as long as expected scores si and goal G are such that candidates

with identical expected scores are sorted into the same tier.

6.3.2 Asymptotic design invariance

The asymptotic outcome O∗ of an election may vary with the scoring rule β. For example, there

may be a different winner if voters are asked to identify their favorite two candidates than if they

identify their single favorite candidate, if the winner in the latter case is a polarizing candidate.

As an axiomatic comparison between outcomes is out of the scope of this paper, we restrict our

1In Borda, candidates not ranked receive a score (M − K − 1)/2, consistent with assuming they are all tied in
position (K + 1).

108 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

attention to cases where all “reasonable” choices of different β asymptotically result in the same

outcome (where “reasonable” corresponds to the set of scoring rules B defined above).

Definition 6.3.1. A setting (M,F) is asymptotically design-invariant for goal G if any reasonable

β induces the same outcome asymptotically. ∃O∗ : ∀β ∈ B,

lim
N→∞

ON (M,F, β,G) = O∗, with probability 1

Such design invariance only occurs under a fairly strong condition on the voter preference distri-

bution: that the candidates can be separated into tiers (according to goal G) such that candidates

in higher tiers are strictly more likely to be ranked by a voter in the top k positions, for all k < M ,

than are candidates in lower tiers.

A setting (M,F) for goal G is asymptotically design-invariant if and only if there exist candidate

tiers O∗ = {C∗1 . . . C∗T } (corresponding to G) s.t. ∀s < t: i ∈ C∗s , j ∈ C∗t =⇒ PrF (σv(i) ≤ k) >

PrF (σv(j) ≤ k), ∀k ∈ {1 . . .M − 1}.
Note that this condition is stronger than stochastic dominance as the inequality is strict for every

position k.

This proposition connects to Caragiannis et al. (2013) as follows: they prove that many rules

(including all positional scoring rules and the Bucklin rule) asymptotically recover the base ranking

σ∗ of a generalization of the Mallows model in which the probability F (σ) of a ranking σ is monotonic

in the distance d(σ, σ∗), where distance function d is itself in some general class that contains the

Kendall’s τ distance. Their results directly imply that such noise models, including the standard

Mallows model, are asymptotically design-invariant for any goal G.

However, for goals G where recovering a full ranking is unnecessary, the condition in Proposi-

tion 6.3.2 is weaker than the assumptions of Caragiannis et al. (2013); there need not even be a

single base ranking σ∗. For example, when G such that we wish to select a set of W winners, F

corresponding to a mixture of Mallows models – with all possible permutations of the W candidates

in the top W positions in the base rankings – would still be design-invariant. Constructing a general

class of ranking noise models that satisfies this property is an avenue for future work.

Assuming asymptotic design-invariance on voter preferences F may seem restrictive. However,

absent axioms – that are precise enough for design purposes – to prefer one scoring rule β over

another, the assumption allows us to proceed in a principled manner. We believe it is unlikely

that such precise, satisfactory axioms exist generally. In the Appendix, we provide a simple example

(similar to that of Staring (1986)) where 1-Approval and 2-Approval select disjoint sets of 2-Winners,

and such examples can be adapted more generally to selecting W winners from either K-Approvals

or K ′-Approvals. In participatory budgeting with the goal of identifying 6-10 winning projects out

of over twenty projects, it is unclear whether there is a principled reason to prefer 4-Approval over

8-Approval. However, such axioms would be an interesting avenue for future work.

6.4. LEARNING RATES AND OPTIMAL DESIGN 109

Furthermore, in Section 6.6.2 we show that design invariance is often approximately satisfied in

practice, especially for identifying a small set of winners, using data from a wide range of participa-

tory budgeting and other elections.

6.4 Learning Rates and Optimal Design

Different elicitation and aggregation mechanisms may take different amounts of voters to learn the

asymptotic outcome. For example, suppose we want to identify the worst candidate out of 100,

where the voter’s rankings are drawn from a Mallows model with φ > 0. Then, asking each voter to

identify their single favorite candidate will eventually identify the worst candidate, but after many

more voters than if we ask each voter to identify their least favorite candidate. We make such

learning rates precise in this section. Our results in this section extend those of Caragiannis and

Micha (2017) as discussed above, both to arbitrary positional scoring rules and by providing tighter

bounds for how a scoring rule affects the convergence rate. These rates are precise enough to design

scoring rules, for example comparing 4-Approval and 8-Approval in the above example.

6.4.1 Learning rates

We begin by deriving rates for how quickly a given positional scoring rule β learns its asymptotic

outcome O∗ (given it exists), as a function of the voter preference model F . In particular, we use

large deviation rates at which a scoring rule learns (Dembo and Zeitouni, 2010).

Definition 6.4.1. Consider a sequence {AN ≥ 0}N∈N, where AN → 0 . Value r > 0 is the large

deviation rate for AN if

r = − lim
N→∞

1

N
logAN

When r > 0 exists, AN → 0 exponentially fast, with exponent r asymptotically, i.e., AN is

e−rN±o(N). These rates provide us both upper and lower bounds for the probability of an error

or the number of errors in an outcome after N voters, up to polynomial factors. In particular, in

the propositions below, we will calculate the large deviation rate of errors in the outcome. We will

also then provide (loose) upper bounds for such errors after N voters that hold without any missing

polynomial factors, for any N . These upper bounds are equivalent to Chernoff bounds.

The particular forms for these rates, derived below for general noise models F , may seem complex.

However, they are useful both for theoreticians and practitioners. For example, in Section 6.5.1, we

use the structure of such rates to resolve open questions regarding when randomization between

mechanisms can help learn the outcome from votes drawn from an arbitrary noise model. In Sec-

tion 6.6, we show that learning rates – even when empirically calculated – reflect the true behavior

110 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

of errors in real elections with a small number of voters; we then use empirically calculated learning

rates to draw design insights across elections.

Rates for separating two candidates We now derive the large deviation learning rates for

recovering the true ordering between a pair of candidates i, j, given noise model F . These rates will

directly translate to the learning rate for the overall election, given some goal G.

Fix scoring rule β ∈ B, voter distribution F , and consider candidates i, j such that si > sj . Then,

the probability of making a mistake in ranking these two candidates after N voters, Pr(σN (i) >

σN (j)), goes to zero with large deviation rate

rij(β) = − inf
z∈R

logEF [exp (z (β(σv(i))− β(σv(j))))]

Further, the following upper bound holds for any N .

Pr(σN (i) > σN (j)) ≤ exp(−rij(β)N)

The proof follows directly from writing a random variable for the event of making a mistake after

N voters and then applying known large deviation rates. This simplicity emerges because positional

scoring rules are additive across voters.

The proposition establishes that – for a fixed number of candidates M and voter noise model F

– the probability of making a mistake on any single pair of candidates i, j decreases exponentially

with the number of voters, at a rate governed by the scoring rule β and the candidates’ relative

probabilities of appearing at each position of a voter’s preference ranking. The rate rij(β) is non-

negative, and larger values correspond to faster learning of the relative ranking of i, j. Note that for

notational convenience, we suppress F in the argument for the rate.

For general β, we cannot find a closed form for rij(β). However, the structure of this rate, in

particular that of the argument in the log(·), will directly let us show that randomization cannot

help learning outcomes among positional scoring rules, for arbitrary noise models F .

For K-Approval voting, further, the rate simplifies.

Consider β consistent with K-Approval voting for some fixed K, and candidates i, j such that

si > sj . Then the large deviation rate rij(β) in Proposition 6.4.1 is

rij(K) = − log

(
2
√
tiij(K)tjij(K) + 1− tiij(K)− tjij(K)

)

Where tiij(K) , PrF (σv(i) ≤ K,σv(j) > K), i.e., the probability that a voter approves i but not

j.

The proof follows directly from the structure of β for K-Approval, β(k) = I[k ≤ K]; for each

pair of candidates, the sufficient statistics are how often each candidate appears in a voter’s top K

6.4. LEARNING RATES AND OPTIMAL DESIGN 111

list but the other candidate does not.

We overload notation and use K directly in the argument for rij(K). This rate function rij(K) is

convex in the probabilities tiij(K), tjij(K); this fact will let us show that randomization, even among

K-Approval mechanisms, cannot help learning the relationship of any pair of candidates.

Rates for learning the outcome In general, the rates at which one learns each pair of candidates

immediately translate to rates for learning the entire outcome O∗.

Consider goal G and β ∈ B such that ON → O∗. Let QN be the expected number of errors in

the outcome after N voters,
∑
i∈C∗s ,j∈C∗t ,s<t

Pr(σN (i) > σN (j)). Then QN goes to zero with large

deviation rate

r(β) = min
i∈C∗s ,j∈C∗t ,s<t

rij(β)

Further, the following upper bound holds for any N .

QN ≤M2 exp(−rN)

The large deviation rate r(β) thus provides a tight characterization for how many voters it takes

to (with high confidence) recover the asymptotic outcome of an election. Note that the goal plays

an important role: for selecting W winners, for example, it is not necessary to learn the exact

relationship among candidates {1, . . . ,W}, speeding up outcome learning. Design β also matters;

e.g., even amongst approval voting mechanisms, K = 1 vs K = 5 will produce substantially different

tiij(K). To derive learning rates for K-Approval for any given noise model or using real-world

data, one simply needs to calculate these values. We do so numerically for the Mallows model and

empirically with real world data in Sections 6.5.2 and 6.6, respectively.

6.4.2 Optimal design and discussion

Now that we can quantify how quickly a given scoring rule β learns its asymptotic outcome, we

apply our framework to designing elections, i.e., choosing an optimal scoring rule β. For the rest

of this work, we assume that the setting (M,F) is asymptotically design-invariant for the goal G,

i.e., there exists an outcome that is asymptotically induced by every reasonable scoring rule. Then,

the design of an election β only affects the rate at which the election converges to the asymptotic

outcome O∗, as calculated above. With no other constraints, then, the design challenge is simple:

find the rate optimal β.

Definition 6.4.2. A scoring rule β∗ ∈ B is rate optimal if it maximizes the rate in Proposition 6.4.1.

K∗-Approval is Approval rate optimal if it maximizes the rate among K-Approval mechanisms.

Rate optimal designs β learn the outcome faster than others in the number of voters, and so are

preferable to other designs. What influences how quickly a design β learns? EF [exp (z (β(σv(i))− β(σv(j))))]

112 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

0 10 20 30 40 50
Number Candidates

0

5

10

15

20

25

B
es
t
K

φ

0.5

0.8

0.9

0.95

0.99

0.999

(a) For selecting W = 1 winner as number of candidates vary.

0 10 20 30 40 50
Number Winners

0

10

20

30

40

50

B
es
t
K

(b) For M = 50 candidates as number of win-
ners vary.

Figure 6.1: K-Approval rate optimal mechanism for the Mallows model as φ, number of candidates,
and number of winners vary.

must be small (near zero) for negative z, and so β(k)−β(k′) must be large when Pr(σv(i) = k, σv(j) =

k′) is large. In other words, a scoring rule must reward a candidate achieving a position in a voter’s

ranking that is only achieved by asymptotically high-ranking candidates. For example, if it is com-

mon for worse candidates to be ranked second in a given voter’s ranking but not to be ranked first,

then β(1)� β(2) would be beneficial.

Note that finding such designs requires knowledge of the voter noise model F , which in many

settings may not be available before the election. However, next in Sections 6.5 and 6.6, we show

that there are valuable insights that apply across elections, including how our approach has informed

participatory budgeting deployments.

6.5 Theoretical Design Insights

The learning rates derived in the previous section provide election design insights, even before our

approach is applied to real-world data. In particular, in this section, we first extend the previous

literature on the (potential) benefits of randomizing between mechanisms. Then, we study the task

of selecting W winners using K-Approval voting.

6.5.1 When does randomization help?

We now consider the question of whether randomizing between mechanisms in an election may speed

up learning. By randomization, we mean: consider a set of scoring rules B = {β1, . . . , βP } ⊆ B;

elicitation and aggregation for a given voter is done according to a scoring rule picked at random

from B, where βp is selected with probability dp.

Note that the learning rate of such randomized schemes can be calculated as before, by summing

across βp inside the E[·] of rij(β) or – for B consisting only of K-Approval votes – directly through

6.5. THEORETICAL DESIGN INSIGHTS 113

the resulting probability that the voter approves i but not j. We use rij(B,D), r(B,D) to denote

the candidate pairwise and overall outcome learning rates, respectively, for randomized mechanism

(B,D), where B = {β1, . . . , βP } ⊆ B and D = {d1, . . . , dP }.
It is known that in some settings randomization improves learning, asymptotically in the number

of candidates. Caragiannis and Micha (2017) provide an example in which randomizing uniformly

between all possible K-Approval mechanisms outperforms any static K-Approval elicitation, when

the goal is to rank all the candidates. Their insight is that, under the Mallows model and under a

fixed K, either the first two candidates will be hard to distinguish from each other, or the last two

will, and randomizing between mechanisms balances learning each pair.

We now study randomization for the goal of selecting W winners and for arbitrary positional

scoring rules and voter noise models. Our first result is that randomizing between scoring rules does

not help, for any voter noise model, in contrast to the case when restricted to approval votes.

Theorem 6.5.1. Randomization does not improve the outcome learning rate for any asymptotically

design-invariant noise model F or goal G. For any randomized scoring rule mechanism (B,D),

where B ⊂ B, for any F , G, the scoring rule β∗(k) =
∑
p dpβp(k) satisfies r(β∗) ≥ r(B,D).

The result follows from the fact that EF [exp (z (β(σv(i))− β(σv(j))))] is convex in β(k), for all

i, j, z, F . Then, given a randomization over β1, . . . βP , we can increase − infz log(·) by decreasing its

argument, by instead using the static scoring rule defined by the corresponding convex combination

of β1, . . . βP . Note that such a negative result cannot be obtained via analysis that is asymptotic in

the number of candidates; we need learning rates for a given election.

Next, we further refine the result of Caragiannis and Micha (2017), by showing that the “pivotal

pair” feature of their example – where different pairs of candidates dominate the learning rate

for different mechanisms – is key. In particular, our next result establishes, again for any noise

model, that randomization amongst K-Approval mechanisms cannot help separate any given pair

of candidates.

Theorem 6.5.2. Randomization amongst K-Approval mechanisms does not improve the learning

rate for separating a given pair of candidates i, j for any asymptotically design-invariant noise model

F or goal G. For any randomized K-Approval mechanism (B,D), where βp ∈ B corresponds to p-

Approval, for any F , G, there exists a mechanism K∗ij-Approval such that rij(K
∗
ij) ≥ rij(B,D).

The proof relies on the pairwise rate function rij(K) being convex in the approval probabilities

tiij(K), tjij(K).

This theorem directly implies that, for the Mallows model, randomization among K-Approval

voting cannot speed up learning when the goal is to identify a set of W winners, as opposed to when

the goal is to rank.

Corollary 6.5.1. Randomization among K-Approval mechanisms does not improve the learning

rate for selecting W winners from the Mallows model. For any randomized K-Approval mechanism

114 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

(B,D), where βp ∈ B corresponds to p-Approval, for selecting W winners from the Mallows model,

there exists an Approval rate optimal mechanism K∗-Approval such that r(K∗) ≥ r(B,D).

The proof simply notes that under the Mallows model with this goal, the candidate pair W,W+1

(when candidates are indexed according to reference distribution σ∗) is pivotal regardless of the

K-Approval mechanism used. This corollary does not extend to arbitrary noise models, where

randomization amongst K-approval mechanisms may improve the learning rate.

Theorem 6.5.3. Randomization among K-Approval mechanisms may improve the learning rate for

the goal of selecting W winners. There exist asymptotically design-invariant settings (M,F) for the

goal of selecting W winners such that a randomized K-Approval mechanism (B,D), where βp ∈ B
corresponds to p-Approval, satisfies

r(B,D) > max
K

r(K)

We prove the result two ways: (1) we construct an example in which candidate h is asymptotically

selected, and candidates i, j are not. Which of h � i or h � j is the pivotal pair (determines the

overall rate function) depends on the K-Approval mechanism used, and randomizing between two

mechanisms improves the overall rate; (2) perhaps more interestingly, we find many examples in our

real PB elections and other ranking data in which randomization would have sped up learning for

the task of selecting a set of winning candidates (see Section 6.6.4).

6.5.2 K-Approval for selecting W winners

One of the most common voting settings is identifying a set of W winners using K-Approval, whether

in representative democracy elections (typically K = W = 1), polling for such elections (where the

goal often is to identify the top few candidates out of many, especially in primary races), or crowd-

sourcing labels (where one wants one or a few labels for an item out of many possible ones). Here,

we study how to design such elections, i.e., how to choose the best K, i.e., the one that maximizes

the learning rate. For simplicity, we work with the Mallows model, extending the resulting insights

to real-world data in the next section.

Recall that in a Mallows model, each voter’s ranking is a noisy sample from a reference distribu-

tion σ∗. With this symmetric model, one may believe that setting K = W is always optimal. For

example, when noise parameter φ = 0 and so each voter’s ranking is exactly σ∗, K = W is optimal;

in fact, any other design K 6= W fails to correctly identify the set of winners even asymptotically:

it would not distinguish among the first K candidates in σ∗ or among the last M −K candidates.

However, our next result establishes that the cases with φ > 0 are different.

Theorem 6.5.4. Under the Mallows model and the goal of selecting W winners, W -Approval may

not be Approval rate optimal.

6.6. EMPIRICS AND PB DEPLOYMENTS 115

We prove the theorem by example. To find this example and to generate the plots discussed

next, we use an efficient dynamic program to exactly calculate the joint distributions of the locations

σv(i), σv(j) of pairs of candidates i, j in a voter’s ranking, given the Mallows noise parameter; we can

then directly calculate tiij(K), tjij(K) and thus the learning rate for each K-Approval mechanism.

This program leverages Mallows repeated insertion probabilities (Diaconis, 1988; Lu and Boutilier,

2011) and may be of independent interest for numerical analyses of the Mallows model.

Numerical analysis We now numerically analyze, for the Mallows model, how the Approval rate

optimalK-Approval mechanism varies with the Mallows noise parameter φ, the number of candidates

M , and the number of winners W . Recall that the Mallows model is asymptotically design invariant,

so different mechanisms only differ in how quickly they learn the asymptotic outcome.

In Figure 6.1a, the goal is to select W = 1 winner, and φ and M are varied. With low noise,

φ / .5, it is rate optimal to use 1-Approval, i.e., to ask each voter to select their favorite candidate,

regardless of how many candidates there are. However, with higher noise φ, as the number of

candidates in the election increases, so does the K in the optimal K-Approval mechanism. For

φ = .999,M = 50, for example, it is best to ask each voter to select their favorite 25 candidates,

even if the task is to identify the single best candidate according to the reference distribution σ∗.

Similarly, Figure 6.1b shows how the rate optimal K-Approval mechanism changes with the

number of winners desired and the noise parameter, fixing the number of candidates at M = 50.

Again, with high noise it is best to ask voters to identify their favorite half of candidates, regardless

of how many winners need to be identified. With low noise, however, W -Approval is optimal to

select W winners.

Overall, the analysis suggests that with higher noise in the voter model, one should tend toward

asking voters to rank their favorite half of candidates, regardless of M and W .

The high-noise setting may seem unrealistic; however, as we will see in the next section, which

K-Approval mechanism is rate optimal in practice often scales like the high noise settings, consistent

with the idea that voting distributions in practice do not look like they are drawn from a low-noise

Mallows model.

6.6 Empirics and PB deployments

We now apply our insights to practice. We focus on K-Approval voting, as opposed to general

scoring rules. This section is organized as follows. In Section 6.6.1, we describe our data sources.

We validate our model in Section 6.6.2; first, we demonstrate that large deviation rates effectively

capture how quickly various mechanisms learn; next, we show that in practice voter noise models

are approximately design invariant. In Section 6.6.3, we show that the insights from Section 6.5.2

regarding optimal approval mechanisms extend to practice. Finally in Section 6.6.4 we note that

116 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

0 200 400 600 800
Voters

10−3

10−2

10−1

100

E
m
p
ir
ic
al

E
rr
or

Mechanism

1-Approval

2-Approval

3-Approval

4-Approval

Borda

10−2

10−1

100

L
ea
rn
in
g
ra
te

p
re
d
ic
te
d
E
rr
or

(a) Boston 2016 PB election, selecting 1 winner: Av-
erage empirical bootstrapped error – i.e., fraction of
times the asymptotic winner is selected (solid lines,
left axis), compared to such errors over time im-
plied by the (empirically calculated) learning rates
– i.e., e−rN (dashed lines, right axis). The right axis
is a vertically shifted (in log scale) version of the
left axis, reflecting that the learning rate errors are
asymptotically valid up to polynomial factors. All
mechanisms return the same winner when all votes
are counted. “Borda” is the Borda count for the 4
candidates ranked, and all others are assumed to be
tied at rank 5 for each voter.

1-
A
p
p
r.

2-
A
p
p
r.

3-
A
p
p
r.

4-
A
p
p
r.

5-
A
p
p
r.

6-
A
p
p
r.

7-
A
p
p
r.

8-
A
p
p
r.

9-
A
p
p
r.

B
or
d
a

1-Appr.

2-Appr.

3-Appr.

4-Appr.

5-Appr.

6-Appr.

7-Appr.

8-Appr.

9-Appr.

Borda

0.92

0.91 0.94

0.86 0.89 0.95

0.79 0.83 0.89 0.93

0.75 0.80 0.85 0.90 0.95

0.75 0.80 0.83 0.88 0.93 0.98

0.56 0.65 0.69 0.75 0.79 0.81 0.81

0.50 0.59 0.66 0.72 0.72 0.75 0.75 0.91

0.86 0.88 0.92 0.93 0.90 0.87 0.85 0.75 0.84

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Approximate design invariance across elections.
For the task of selecting W = 4 winners, this plot
shows the average overlap in the top 4 candidates
identified by different mechanisms across all the elec-
tions in our dataset, if all voters with complete
rankings are counted. For example, of the top 4
candidates identified by 1-Approval across elections,
92% are also identified as top 4 candidates by 2-
Approval. For each K-Approval mechanism, we in-
clude all elections where there were at least K + 1
candidates.

Figure 6.2: Validating model: comparing learning rates to empirical error, and showing approximate
design invariance.

6.6. EMPIRICS AND PB DEPLOYMENTS 117

we find many examples in practice where randomizing between K-Approval mechanisms improves

learning.

6.6.1 Data description

We leverage two data sources (detailed dataset information is in Appendix Table E.1). First, we

have partnered with dozens of local governments to help run participatory budgeting (PB) elections

in the last five years. These elections have used a variety of methods, primarily K-Approval; our

data in this work comes from 5 elections where K-Ranking was used, including 3 recent elections

where K = 10. This data is particularly useful as PB is among the most common types of elections

with many candidates and several winners, with several theoretical analyses (Freeman et al., 2019;

Garg et al., 2019b; Goel et al., 2016).

Second, we use data available on PrefLib (Mattei and Walsh, 2013; O’Neill, 2013; Popov et al.,

2014; Regenwetter et al., 2007, 2008), limiting ourselves to 28 elections with at least 5 candidates and

700 voters who provided full rankings. This ranking data spans many domains, from people’s sushi

preferences to Glasgow City Council elections. This domain breadth supports the broad applicability

of the design insights explored in this section.

We focus on ranking data to be able to simulate counter-factuals for the same election: with

K-Ranking data, we can simulate what would have occurred with any K ′-Approval elicitation mech-

anism, for K ′ ≤ K (assuming no behavioral quirks). With approval data, on the other hand, one

cannot compare the mechanism to any other for that given election.

One challenge is that ranking many candidates is onerous, and so voters rank at most 14 candi-

dates in our dataset. For the data we use from on PrefLib, full rankings (rankings up to the number

of candidates) are available. In the PB elections in our partner cities, typically each voter ranks or

selects her favorite K �M candidates.

6.6.2 Model validation

Our model and design approach has two components that must be validated: (1) that learning rates

can effectively be used to compare different mechanisms, and (2) that design invariance (approxi-

mately) holds in practice.

Large deviation rates as effective proxies for learning We now confirm that, for a given

election, empirically calculated large deviation learning rates are effective proxies for the rate at

which the error in recovering the asymptotic output decreases as the number of voters increases

(even though large deviation learning rates are only asymptotically valid in the number of voters).

As examples, we first identify three elections and goals for which many of the potential K-Approval

mechanisms return exactly the same asymptotic outcome. Then, we bootstrap voters from the

available data of voters and empirically calculate the errors made in identifying the winning set of

118 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

candidates. We further calculate the large deviation learning rates for these mechanisms, using F

implied by the voting data and the formula in Proposition 6.4.1.2

Figure 6.2a shows the resulting errors over time for one such election where 4-Rankings are

available. We further plot e−rN for each mechanism, i.e., the error over time implied by the learning

rate (up to polynomial factors). This plot, along with Appendix Figure E.1, yields several insights:

1. The mechanism matters: when selecting 1 winner from the election in Figure 6.2a after 400

votes, there is 20% chance of not picking the ultimate winner if 1-Approval is used. With

2 or 3-Approval, this number is 0.1%. The winner appears often in a voter’s top two or

three positions (but not necessarily first), while the ultimate second place candidate often falls

outside the top three. Scoring rules that reward top three placements thus perform well.

2. The learning rates effectively capture the behavior of the empirical error: both comparatively

across mechanisms, as well as the asymptotic rate (slope of the line in log scale). This property

enables use of large deviation learning rates as proxies for learning even in elections with a

small number of voters.

3. Ranking K candidates rather than selecting K candidates is more onerous for voters. However,

it does not always provide more information in terms of learning rates, as in the examples in

Appendix Figure E.1.

Design invariance in practice Design invariance does not strictly hold in any election in our

dataset (as expected as the condition is strong). However, it approximately holds. Similar mecha-

nisms produce the same asymptotic outcome for many tasks. Figure 6.2b shows, for example, the

average overlap across elections in the top 4 candidates identified by each mechanism. (Appendix

Figure E.2 shows the same plot for the top 1 and 3 candidates, as well as the average Kendall’s

τ rank correlation between the full rankings identified by different mechanisms). Furthermore, we

find many elections and goals where most mechanisms return the same asymptotic answer, as in

the elections we leverage for the plots showing learning rates are effective proxies. This relative

consistency, especially for similar mechanisms, enables us to compare different mechanisms by their

learning rates.

6.6.3 K-Approval for selecting W winners

In Section 6.5.2, we showed for the Mallows model how the rate optimal K-Approval mechanism

changes with the noise parameter φ, the number of candidates, and the number of winners. We now

show this scaling in practice.

For every election in our dataset, we find the Approval rate optimal mechanism (among K we

can simulate) for every goal of selecting W winners, for 1 ≤ W ≤ M . We then run a regression

2Given an empirical F̂ , learning rates can be numerically calculated: the infz [·] is a convex minimization problem.

6.7. DISCUSSION 119

across all the elections for which K is rate optimal, versus the number of winners desired and the

number of candidates; see Table E.2 in the Appendix for the regression table. While there is some

variation across elections, the number of candidates and winners proves a reasonable metric across

elections for the rate approval K-Approval mechanism (R2 ≈ .27).

The regression confirms the idea that in practice, one should regularize toward asking voters to

choose their favorite half the candidates. For picking a small subset of winners W ≈ 4 out of more

than 10 candidates, for example, one should ask voters to provide their favorite K ≈ 6 candidates,

with K > W . This suggestion directly counters common practice. In the PB elections that we have

helped run, for example, 4 or 5-Approval is most typical, even though ultimately 6-10 projects may

be funded (out of ≈ 15-20).

Then, in Figure E.3 in the Appendix, we plot the line induced from the regression coefficients with

the Mallows rate optimal lines, for M ≤ 10 candidates. Comparing to the rate optimal mechanisms

for the Mallows model with various φ (within the candidate range for which we have empirical data),

we find that empirical data behaves most closely to a Mallows model with noise parameter φ ∈ [.8, .9].

(We are not claiming that empirical data is drawn from a Mallows model; it most certainly is not,

with factors such as polarizing projects important in practice). This coarse comparison provides an

approximate expected scaling behavior for elections with many candidates.

6.6.4 Randomization in practice

We find 16 examples in which randomizing between two K-Approval mechanisms leads to faster

learning than using either mechanism separately, including 8 examples where such randomization

beats the Approval rate optimal mechanism. Table E.3 in the Appendix contains details.

6.7 Discussion

We show that in elections with many candidates, the elicitation mechanism and corresponding

scoring rule used affect how quickly the final outcome is learned. The learning speed differential

between mechanisms can be the difference between identifying the ultimate winner with only a 80%

probability or a 99.9% probability after 400 voters, for example. We then provide design decisions

that emerge when our framework is applied to data from real elections. When using K-Approval to

select a small number of W winners, for example, it is often better to ask voters to identify their

favorite K > W candidates. The insights from this work should be applicable in a variety of such

settings, from elections to crowdsourcing labeling tasks.

There are several important, open research avenues. Most importantly, in real elections maxi-

mizing the rate at which the final outcome is identified is not the only goal, and future work should

seek to balance such multiple objectives.

For example, there may be axiomatic reasons to prefer one elicitation mechanism over another,

120 CHAPTER 6. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

e.g., that the final outcome corresponds to the candidate(s) that the most voters indicate is their

first choice. Another objective may be to minimize the cognitive load imposed on voters. Asking

voters to provide a full ranking over the candidates and then using a rate-optimal scoring rule

trivially provides faster learning than any other mechanism. However, asking voters to rank 20

candidates is prohibitive in many settings. Future empirical work, in line with that of Benade et al.

(2018) and Gelauff et al. (2018), should study the cognitive load various mechanisms impose on

voters, to better understand the trade-off between the objectives.

Appendix A

Driver Surge Pricing

A.1 Additional discussion and information

A.1.1 Platform objective

Our focus in this work is on designing incentive compatible payment functions for drivers. Here, we

establish that this task is a sub-problem of the comprehensive platform pricing problem—one that

can be studied separately given the components we considered exogenous in our model description.

We work with the dynamic model, and suppose that the platform’s primary objective is profit

(our argument also trivially holds for revenue, trips served, welfare, or other objectives). With our

assumption of a single, earnings-maximizing driver, the platform’s overall challenge is as follows.

On the rider side, we suppose that the two world state periods, i ∈ {1, 2}, are induced by latent

demand shocks. The platform’s design lever is the pricing policy p = {p1, p2}, where pi(τ) indicates

the rider price for trip length τ in world state i. Rider demand depends on the prices, inducing

request rates and distributions λpi , F
p
i through a standard demand model for each trip: a rider with

latent demand for trip τ requests a ride if the price is no more than their valuation for the trip

(without substituting for trips of different lengths).

On the driver side, as detailed in our model formulation, the driver chooses a strategy σ to maxi-

mize earnings rate R(w, σ, λpi , F
p
i), where the additional arguments emphasize that earnings depend

on rider prices through induced demand. Further, the driver has an outside option earnings rate of

R, and will participate in the system only if it is possible to achieve earnings rate R(w, σ, λpi , F
p
i) ≥ R

with some strategy σ.

The set of rides served by the platform are those that are both requested by riders (as induced

by pricing p) and accepted by the driver (denoted by driver strategy σ). Let Rev(p, λpi , F
p
i , σ) =

lim inft→∞
Rev(p,λpi ,F

p
i ,σ,t)

t denote the resulting revenue rate for the platform, i.e., the rate paid by

riders.

121

122 APPENDIX A. DRIVER SURGE PRICING

Putting things together, the platform’s profit maximization problem is as follows.

maximize
p,w

Rev(p, λpi , F
p
i , σ

∗)−R(w, σ∗, λpi , F
p
i)

subject to R(w, σ∗, λpi , F
p
i) ≥ R

σ∗ ∈ arg max
σ

R(w, σ, λpi , F
p
i)

(A.1)

Where the first constraint is for driver participation, and the second for incentive compatibility

(where the arg max is not unique, assume that the driver chooses the policy σ with largest measure.).

With this formulation, the platform must jointly optimize prices p and payments w, as both together

determine the set of trips served and the profit for each such trip. Such a tightly connected opti-

mization would preclude the approach taken in this work, where we focus on designing the payment

functions for drivers, holding prices p fixed. However, the optimization can be rewritten to make

our approach tractable.

Program (A.2) yields the same optimal value as Program (A.1). For each solution, the same

rides are served at the same prices as in a matching solution of (A.1).

maximize
p,w

Rev(p, λpi , F
p
i , σ

∗)−R

subject to σ∗ = {(0,∞), (0,∞)}
R(w, σ∗, λpi , F

p
i) = R

σ∗ ∈ arg max
σ

R(w, σ, λpi , F
p
i)

(A.2)

The reformulation in Proposition A.1.1 follows from a simple insight: in our model with no driver

private information, a driver rejecting a request is equivalent to the rider not requesting the trip – and

the platform can predict such rejections perfectly. Then, for any optimal solution of Program (A.1)

in which a rider requests a trip τ but the driver rejects it, the platform can equivalently raise rider

prices until no rider requests such a trip, F pi (τ) = 0, and so the driver accepts all requested trips

lengths. Further, the driver earnings constraint R(w, σ∗, λpi , F
p
i) ≥ R is of course tight: driver

payments can otherwise be proportionally scaled down.

With Program (A.2), the driver payment function w and induced driver strategies σ just appear

in the constraints. Given each potential choice of rider pricing function p and induced demand λpi , F
p
i

(i.e., which trips to service at what prices), the platform must determine how to pay drivers such that

they accept every request, i.e., the platform must choose payments wi such that the participation

and IC constraints are met. In this work, we focus on this challenge, holding rider prices p and thus

demand λi , λ
p
i , Fi , F

p
i , fixed.

A.1. ADDITIONAL DISCUSSION AND INFORMATION 123

A.1.2 Driver earnings in each state

Recall that in Lemma 2.2.1, we decompose the driver reward into reward rates for each world state,

Ri(wi, σi), denoting the earnings rate while the driver is either open in i or on a trip that started in

i. In our theoretical pricing results in Section 2.4, we show how to construct incentive compatible

pricing given choices of average earnings in each state, i.e., setting Ri(wi, σi) = Ri for some R1, R2.

These rates, subject to the participation constraint that overall earnings R(w, σ) ≥ R, is a design

choice for the platform. Here, we provide some intuition for how to make this choice.1

Business constraint from revenues. The platform’s revenue rate can be decomposed just

like the driver earnings rate, with state i revenue rate, Revi(pi, σi, λ
p
i , F

p
i) =

1
Fi(σi)

∫
τ∈σi

pi(τ)dFi(τ)

Ti(σi)
.

Latent demand and the choice of prices pi together induce platform revenue rates for each world

state. Then, in practice, the per-state driver earnings rates Ri are approximately set as a fixed

fraction of revenue

Ri = α Revi(pi, σi, λ
p
i , F

p
i)

for some α. This choice passes on the revenue earned in each state to drivers, and so represents a

partially decoupled setting: at the trip level, the amount paid to drivers may deviate from that paid

by the rider, but prices are coupled on average at the level of a surge state. In practice this simple

rule helps ensure that individual prices for a rider and driver do not differ by too much, which may

be desirable for transparency and driver satisfaction reasons.

Driver positioning. However, the question of at what level to best decouple prices, and e.g.,

how to potentially transfer money between different surge states, is an interesting one for future

work. Here, we describe one potential rationale for optimizing Ri.

Empirically, Lu et al. (2018) find that drivers respond to real-time surge prices (displayed through

a heat-map) by re-positioning themselves to surge areas, an effect that is in addition to drivers

choosing to drive (activating) in times and places where they expect to see surge. Thus, a higher

surge earnings rate R2 translate to more drivers during surge, as a result of both (a) short term,

real-time movement toward surge due to seeing the heat-maps as in Figure 2.1, and (b) drivers

logging on when and where there tends to be surge. A platform could thus choose the relative values

of Ri as a lever for this type of re-positioning. See, e.g., Besbes et al. (2018b) for theoretical insight

on this challenge.

Our model does not directly capture either of the above ways a platform could set and optimize

Ri, as it has a single driver and geographic location, and we do not optimize rider prices and thus

revenue. However, note that both effects above are mediated through the average earnings (i.e., Ri),

either predicted by the driver or communicated through a heat-map, and do not depend directly

on trip specific earnings, i.e., wi. Thus, these effects can be incorporated by adding the constraints

1The rider-side pricing problem of setting average prices and thus revenue Revi, given the latent demand, is
potentially easier as the primary goal is a short-term allocation of the supply (drivers) to the riders who most value
the service. The driver side problem, as discussed, is trickier as there are both short- and long-term effects.

124 APPENDIX A. DRIVER SURGE PRICING

Ri(wi, σi) = Ri in Program (A.2), with target earnings rate Ri optimized elsewhere.

We take this approach in this work, analyzing for what values of Ri the constraints Ri(wi, σi) =

Ri are compatible with incentive compatible pricing. In our main result, Theorem 2.4.1, we cannot

construct IC prices that induce all relative values of R1(w1, σ1) = R1 and R2(w2, σ2) = R2: if

the platform tries to make the surge state i = 2 is too valuable compared to regular times i = 1,

R2 � R1, then drivers will reject long trips in the non-surge state.

A.1.3 Model’s relationship to practice

Several of our theoretical model choices emerge from common ride-hailing practice; other choices –

such as not considering spatial heterogeneity – differ from practice, and so we consider the general-

izability of our insights to practice in Section 2.6, using real ride-hailing data. See also Section A.2.1

where we justify our choices in the numerical section with RideAustin data and provide more infor-

mation on, e.g., surge evolution.

Heat-map constraint and affine pricing. When drivers are not on a trip, they see a heat-

map of the current surge values, indicated as a multiplier or additive value, cf. Figure 2.1; this has

important implications for practice, and for the pricing functions we consider in this work.

First, in our numerical and empirical sections we focus on multiplicative and additive surge, as

opposed to other general surge payment schemes. Two rationales for this choice are that these are

the schemes considered by platforms in practice, and that they naturally serve as approximations of

our IC scheme. The fundamental rationale, however, is that such schemes can be directly displayed

on the heat-map. With such single-parameter schemes, the driver can connect their surge payment

to knowledge available to them before the trip starts. This is an important feature in practice, where

platforms must be as transparent as possible regarding how they pay drivers. Consider for example,

if the platform instead displayed on the heat-map some expected payment over all trips taken in

that spatio-temporal spot (e.g., the equivalent of Ri); the driver would have no way to verify that

the platform in fact did pay out that amount on average, unless they crowd-sourced data from other

drivers.

Second, in this work we consider only pricing functions that depend on the world state when the

trip starts, but do not incorporate information from what happens during the trip. Again, this is

an important practical constraint: incorporating on-trip information would require the platform to

perform a path-integral over surge values in the driver’s spatio-temporal path from the origin to the

destination, which would be difficult to implement and for the driver to verify. More fundamentally,

however, the surge payment is partially an incentive for drivers to re-locate to a surge area, cf. Lu

et al. (2018), and modeled by Ri in our work. Updating surge payments based on what happens

when a driver is on-trip would change such incentives.

Surge evolution. Surge is clearly non-Markovian and non-binary in practice, with strong

intra-day patterns – for example, rush hours have predictably higher surge values: see Appendix

A.1. ADDITIONAL DISCUSSION AND INFORMATION 125

Figure A.3b.

However, evolution of surge on finer time scales, on the level of individual trips, is more volatile,

and believably Markovian: see Appendix Figure A.3c, which shows the (spatially-averaged) surge

factor in a small region around the Texas Capitol building every ten minutes over 3 days. Thus,

from the perspective of a single driver who has decided to drive at a certain time block (for example,

5-8pm), surge is believably Markovian on the time order that they are making decisions for whether

to accept certain trips.

The main theoretical difficulty with analyzing non-Markovian updates is that, then, the driver

optimal policy is dependent on the time index as well as the state index; then, results will very

strongly depend on the specific trip length distribution chosen, and in particular the interaction

between the trip length distribution and the surge pattern structure. This interaction prevents any

generalizable insights from emerging. However, as detailed above, our empirical analysis suggests

that our results hold up even under more realistic surge.

Driver Activation We do not endeavor to explain why surge pricing might be useful in this

paper: in our view, riders respond to rider prices, and drivers activate based on expected mean

earnings (i.e., Ri and R, as discussed above), which we take as exogenous. These aspects are well

studied in the ride-hailing literature. Rather, our paper studies the orthogonal question of how to

pay a driver for trips once they are online, not how to induce drivers to drive when and where there

is high demand.

Single driver and equilibrium effects. Our model considers a single driver, when in reality

there are of course many drivers on the road. We do not believe that doing so affects the results,

as the number of other drivers on the road affects average surge dynamics and activation, but

presumably not individual trip decisions, except as mediated through future expectations of surge.

The main theoretical difficulty with analyzing multiple drivers is it would add historical state to

the system not captured by just the current surge state, pertaining to the number of currently open

drivers and the distribution of when currently busy drivers will next become open. This difficulty

is similar to that of modeling non-Markovian surge evolution. It would also lead to a implausible

driver behavior model – each earnings maximizing driver would have to keep track of the number of

other open drivers (and the distribution of when currently busy drivers will next become open).

A.1.4 Supplementary Figures

Figure A.1 shows in an example µ2(σ) as it changes with the surge driver policy σ2 = (t,∞), for

some t. Figure A.2 compares IC surge pricing to multiplicative and additive surge.

126 APPENDIX A. DRIVER SURGE PRICING

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t, Min trip length accepted in surge

0.12

0.14

0.16

0.18

0.20

µ
2
(σ
)

Figure A.1: Fraction of time spent in surge state, µ2(σ), with driver policy σ = {σ1 = (0,∞), σ2},
where σ2 = (t,∞), i.e., t is the minimum trip length accepted in the surge state. The primitives are
as follows: λ1 = λ2 = 12, λ1→2 = 1, λ2→1 = 4; in both states, trip lengths are distributed according
to a Weibull distribution with shape 2 and mean 1

3 . These parameters reflect realistic average trip
to wait time values, and that surge tends to be short-lived compared to non-surge times. Note that
the driver can increase the time spent in the surge state by rejecting short surge trips.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

τ , Length of trip

0.8

1.0

1.2

1.4

1.6

w
i(
τ
)

τ
,
P
ri
ce

p
er

u
n
it
ti
m
e

Multiplicative surge

IC surge

Additive surge

Multiplicative non-surge

(a) Price per unit time wi(τ)
τ

0.0 0.1 0.2 0.3 0.4 0.5 0.6

τ , Length of trip

0.0

0.2

0.4

0.6

w
(τ
),
P
ri
ce

fo
r
tr
ip

le
n
gt
h
τ

Multiplicative surge

IC surge

Additive surge

(b) Price w2(τ)

Figure A.2: Using the same model primitives as in Figure A.1: the payment function wi(τ) for
various surge mechanisms plotted two ways, when R2 = 1 and R1 = 2

3 for drivers who accept every
trip.

A.2 Extra empirical information

This section contains more empirical information. Section A.2.1 provides additional results related

to the model validity and the variance of driver earnings with the various payment functions. Sec-

tion A.2.2 contains more detail and robustness checks for the main empirical analysis.

A.2. EXTRA EMPIRICAL INFORMATION 127

A.2.1 Additional results and facts

Model validity

Here, we discuss how various components of the model relate to ride-hailing marketplaces in practice,

using the RideAustin data from the rest of the empirics. We also justify the three claims we make

in the numerics regarding the common parameter regimes for ride-hailing platforms.

Surge is non-binary, and between 1.1 and 3 times more valuable than non-surge Figure A.3a

contains a histogram of the surge factor. Surge in the RideAustin marketplace during the time

period analyzed takes values divisible by 0.25, between 1 and 5. The mean surge factor is 1.19,

only 30% of trips are surged, and more than 97% of surged trips have a surge factor in (1, 3].

In the model, surge evolves according to a continuous time markov chain. Figure A.3b breaks

down the average surge factor in each 30 minute period in a day, split up by weekdays and

weekends. Surge is clearly not Markovian – there are clear, expected patterns in surge that

correlate with rush hours and early morning times when there may be few drivers on the road.

However, there is substantial additional volatility in addition to the non-Markovian daily

patterns. Figure A.3c shows average surge in each 10 minute period, over 3 days for trips

starting near the Texas Capitol building. The lengths, peak, and start/end times of each surge

period differ – on a ten minute time scale, i.e., on the order of trip lengths, surge is not very

predictable, and so a Markovian assumption may be reasonable on a small time scale.

Surge is short-lived compared to non-surge periods (λ2→1 � λ1→2) High-surge periods are

indeed short-lasting compared to low surge periods, and peak surge tends to be short lasting.

Figure A.3d shows the mean surge factor in the future, based on the current surge factor.

With low surge, the average surge even an hour in the future remains close to 1. With high

surge, however, the average surge in the future decays – and the higher the surge, the faster

the decay.

In a typical surge a driver may only be able to complete one or two such trips. (1
λ2→1

≈
mean trip length). By jointly analyzing Figures A.3d and A.4c, we can see that drivers are

indeed only be able to complete a few trips during surge before it dissipates. On trip times

(with rider in the car) are on the order of 10-15 minutes, and the driver must also wait for a

new request and then drive to the rider. Surge has typically decreased substantially after an

hour.

More directly, Figure A.3e shows for each driver session that has at least 5 trips, the average

surge factor of each trip in the session, split by the surge factor of the first trip. Indeed, a

driver is only able to complete a few trips with peak surge. We note, however, that this plot is

susceptible to selection effects – a driver may choose to drive a different amount of time based

on surge conditions.

128 APPENDIX A. DRIVER SURGE PRICING

(a) Histogram of surge, in log scale. (b) Average surge factor in each 30 minute period
of the day

(c) Average surge in each 10 minute period over
three days on trips that start within 5 miles from
Texas Capitol building.

(d) Divide the 2 months into periods of 10 minutes
each. Then, this plot shows the mean surge factor
x hours in the future, split by bucket of the current
surge factor.

(e) For each driver session that has at least 5 trips, the average surge factor of each trip in the session, split
by the surge factor of the first trip.

Figure A.3: Surge facts from RideAustin marketplace

A.2. EXTRA EMPIRICAL INFORMATION 129

0 10 20 30 40 50

Day in analysis period

5000

10000

15000

20000

N
um

b
er

of
tr
ip
s

(a) Trips per day (b) Trip length distribution (non-surge)

(c) Mean trip length by surge factor

(d) Average number of trips per hour period in the
day. Note the discontinuities at midnight are due to
weekdays becoming weekends and vice versa (Friday
night becomes Saturday morning).

(e) Fraction of a job’s total time that is the time to
drive to the rider, i.e., unpaid.

Figure A.4: Basic trip facts from RideAustin marketplace

In the model, on-trip time and time driving to the rider are combined. In practice, a job

is typically split up into two components: the time it takes to drive to the rider, and the time

that the ride is in the car – and only the second part is paid. Figure A.4e shows a histogram

130 APPENDIX A. DRIVER SURGE PRICING

1 2 3 4 5

Surge factor

−60

−40

−20

0

20

40

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Status quo

1 2 3 4 5

Surge Factor

Payment = Additive surge with base fare

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure A.5: Same as Figure 2.5, except with the surge factor flipped to simulate a world with
frequent, valuable surge.

of the resulting fraction of the total job time that is unpaid. Note that this time is substantial

in the RideAustin data, on average about 30%.

In the numerics, trip lengths are distributed as a Weibull distribution with shape 2. Figure A.4b

shows the distribution of trip lengths for trips without surge. The shape approximation is rea-

sonable, as a Weibull distribution with shape 2.6 best fits the data (with mean set to the

empirical mean). Figure A.4c shows the mean length distribution by surge factor. Perhaps

interestingly, this mean length is non-monotonic in the surge factor, first decreasing and then

increasing with the surge factor.

We cannot directly test the claim in the numerics that in a typical surge the driver will be able to

receive and reject several trip requests (λ2

λ2→1
> 1, but small) – we do not observe drivers being open

to receive a request, unless they actually received a trip request. Unlike in the matching technique

for trip indifference, we cannot use drivers who completed a trip as a proxy – the measurement

would be sensitive to drivers logging off, and the end-locations of trips not being representative of

all trips.

Furthermore, note that the insights regarding additive vs multiplicative surge extend to the

empirics, despite the ways reality deviates from the model.

Regime with frequent, valuable surge

Recall that one of the theoretical insights from Theorem 2.4.1 is that our incentive compatible pricing

scheme only works in a certain regime, if surge is not too valuable compared to regular periods on

average, that R1

R2
∈ [C, 1]. This general insight extends to arbitrary pricing functions (i.e., as R1

R2
→ 0,

then no pricing function w1 during regular periods will induce drivers to accept trips then).

A.2. EXTRA EMPIRICAL INFORMATION 131

Figure A.6: Histogram of per-shift driver earnings per hour. Note that the y-axis is in log scale.

Here, we show that this insight also extends to practice, with non-binary surge. We simulate the

following world: we “flip” the surge factor

Simulated surge = 6−Actual surge.

With this flipped surge, 97% of surged trips have a surge factor in [3, 5], and 30% of the trips

have a surge factor of 5: surge is now the default, and extremely valuable compared to non-surge

periods.

Then, we calculate the driver’s payment according to each such pricing function. Figure A.5

shows the resulting plots for earnings difference by trip length, using the status quo payment function

(but with the simulated surge factor) and with an equivalent additive surge. Two insights emerge:

� With low surge (factor in [1, 3]), drivers are better off on average rejecting most trip requests,

regardless of whether payments are additive or multiplicative.

� A more complex pricing function may be needed: multiplicative surge over-values long trips

with high surge, and additive surge over-values short trips.

Driver earnings variance

We now calculate statistics regarding the average amount drivers earn during a single driving “shift,”

ideally defined as the time between which drivers turn on their app and when they turn it off. To

group trips together into a single driver shift, we use a data column called active driver ID, which

is a refinement of driver ID and seems to correspond to a shift as defined internally by RideAustin.

The “length” of a shift is defined as the time between the first time the driver was dispatched for

a trip during the shift, and the end time of the last completed trip during the shift. Note that this

value is an underestimate of the true shift length, as it does not contain the time it took to receive

132 APPENDIX A. DRIVER SURGE PRICING

the first trip request or the time it takes for the driver to go home after their last trip. Thus, our

estimated shift per hour earnings are biased upwards.

The driver’s total earning during the shift is simply the sum of the payments from each trip,

under the payment function being analyzed. Then, the earnings per hour in a single shift is the total

earnings divided by the trip length.

Figure A.6 shows a weighted histogram of the per hour shift earnings, where the weights are

the shift lengths in hours. Additive surge leads to a lower variance of per hour shift earnings (but

the same mean, as constructed). The standard deviation of per-hour earnings are, respectively:

$16.97 (Status quo fare), and $15.83 (Additive surge with base fare) with mean hourly earnings of

about $32.22. If we instead remove the minimum fare and pickup fare components and simulate

pure additive or multiplicative surge, the standard deviations are: $16.59 (Additive surge), $18.35

(Multiplicative surge).

A.2.2 Empirical analysis additional information

Pre-processing

There are 509, 823 rows (trips) in the time period analyzed.

� 4626 trips were longer than 1 hour or shorter than 30 seconds and were discarded.

� 3780 were longer than 100 miles or shorter than 0.25 miles and were discarded (some overlap

with those discarded for time).

� 26 trips had clearly erroneous total fare (null, or too high for mileage/distance by multiple

orders of magnitude) and were not used to calibrate the reverse engineered fare.

We end up with 503, 383 trips in our analysis.

Payment functions

Figure A.7a shows a histogram of the difference between the total fare available as a column, and

the reverse engineered fare derived from the functional form in the main text. The fit is good, with

a mean difference of $0.005.

Figure A.8 plots the constructed Additive surge fare versus the status quo payments, at the trip

level. As expected, additive surge pays more for short surged trips, and less for long surged trips.

A.2. EXTRA EMPIRICAL INFORMATION 133

(a) Histogram of difference between total fare and
the reverse engineered fare.

(b) “Matching distance” between matched trips
used for the counter-factual earnings.

Figure A.8: Constructed payment function (Additive surge with base fare) vs the reverse engineered
Status quo fare payments at the trip level. As expected, additive surge tends to pay higher for
shorter trips and lower for longer trips.

Matching trips

The “matching distance” as described in the main text between pairs of (date-time, location) tuples

is:

distance((time1, location1), (time2, location2)) = difference in hours(time1, time2)

+
1

20
difference in miles(location1, location2)

Figure A.7b shows the distribution of these distances between a given trip and the matched trip

used for counter-factual earnings, for the matching technique described in the main text.

134 APPENDIX A. DRIVER SURGE PRICING

1 2 3 4 5

Surge factor

−10

0

10

20

30

40

50

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Status quo

1 2 3 4 5

Surge Factor

Payment = Additive surge with base fare

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure A.9: Using next nearby driver with an accepted trip as the counter-factual match.

1 2 3 4 5

Surge factor

−10

0

10

20

30

40

50

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Status quo

1 2 3 4 5

Surge Factor

Payment = Additive surge with base fare

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure A.10: Using period length of next 1 hour (instead of 1.5 hours).

For robustness, we also use an alternate way to find a match for a given trip: using the next

driver who accepted a trip nearby. We calculate the matching distance between the given trip’s start

time and location, and each future trips’ start time and location, and choose the driver of the closest

match. As with the previous method, we filter out recent trips with drivers who are the same as

the given trip’s driver. Note that with this method, the expected earnings difference should be close

to zero, as both drivers match at about the same time and place. However, the variances may vary

with the payment function.

Trip indifference

We now carry out some robustness checks for the trip indifference results, and present supplementary

results.

A.2. EXTRA EMPIRICAL INFORMATION 135

1 2 3 4 5

Surge factor

−20

−10

0

10

20

30

40

50

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Status quo

1 2 3 4 5

Surge Factor

Payment = Additive surge with base fare

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure A.11: Starting measurement from dispatch time instead of trip start time, i.e., taking into
account the first part of the trip that is unpaid for the driver.

1 2 3 4 5

Surge factor

−10

0

10

20

30

40

50

E
ar

ni
ng

s
di

ff
er

en
ce

Payment = Multiplicative surge

1 2 3 4 5

Surge Factor

Payment = Additive surge

Trip time in seconds

(29.0, 699.0]

(699.0, 3598.0]

Figure A.12: With pure multiplicative and additive surge, respectively (no min fare).

Figure A.9 shows the same figure as in the main text, but instead using the next driver with

an accepted trip matching function described in Section A.2.2. The means of the trip indifference

(unconditional on trip length) are close to zero, as expected, but additive surge better balances the

relative value of short and long trips, as before.

Figure A.10 shows the same figure as in the main text with the same matching function, but

instead calculating the driver’s earnings over the next 1 hour. Results are identical.

Figure A.11 starts counting the earnings of drivers starting at the given driver’s dispatch time

instead of trip start time; results are qualitatively identical, demonstrating that the fact that in

practice there are two components to a trip – time from dispatch to the rider (unpaid typically),

and time with the rider to the destination (paid) – do not substantively affect the results.

136 APPENDIX A. DRIVER SURGE PRICING

Finally, Figure A.12 shows the same figure but with how the driver would be paid under the pure

multiplicative and additive surge functions studied in the rest of this work, defined as follows:

Multiplicative surge : [B ×MSurgeFactor]× SurgeFactor
Additive surge : [B ×MSurgeFactor] + [(SurgeFactor − 1)×ASurgeFactor]

MSurgeFactor and ASurgeFactor are surge factor dependent constants that are set such that these

alternative payment functions spend the same amount of money overall for each surge factor as does

the status quo fare. As with the additive surge with a minimum fare, these alternative payments

do not change the mean trip payment conditional on the surge factor, but do change how money is

allocated to various trips within that surge. If instead we used a single constant across surge factors,

this feature would not hold, and the payment functions may pay different amounts on average for

the same surge factor.

A.3 Proofs of single state model results

In this section, we provide proofs of the theorems and lemmas in the main text regarding the single

state model. Section A.3.1 formally states the driver reward. Section A.3.2 contains the proof of

Theorem 2.3.1. Section A.3.3 contains the proof of Proposition 2.3.1. Finally, Section A.3.4 contains

a partial uniqueness result regarding the optimal driver policy.

A.3.1 Driver reward

Recall that R(w, σ, t) is the total earnings from jobs accepted up from time 0 to time t, i.e.,

R(w, σ, t) = E
[∑N(t)

k=1 w(τi)
]
, where τi is the length of the ith job the driver accepts, ei is the

wait time to that job, and N(t) = |{i : 0 ≤ τi + ei ≤ t}| is the number of accepted jobs up to time t.

As mentioned using the renewal reward theorem in the main text,

R(w, σ) , lim inf
t→∞

R(w, σ, t)

t
=

Expected cycle payment given σ

Expected cycle length given σ
=

1
F (σ)

∫
τ∈σ w(τ)dF (τ)

1
F (σ)λ + 1

F (σ)

∫
τ∈σ τdF (τ)

The 1
λF (σ) term is the expected value of a exponential random variable with rate λF (σ), which is

the rate at which a driver accepts ride requests when open.

A.3.2 Proof of Theorem 2.3.1

We now prove Theorem 2.3.1, regarding the form of the optimal policy in the single-state model –

where the length of a trip does not matter, only the earnings rate. The optimal policy trades off the

earnings rate while on a trip with the driver’s utilization rate. At a high level, the proof proceeds as

A.3. PROOFS OF SINGLE STATE MODEL RESULTS 137

follows: starting from any policy that is not of the appropriate form, we replace trips in the policy

with those with a higher earnings rate, while keeping the utilization rate exactly the same. Such

replacements result in a policy that is almost of the correct form, except there may be an earnings

rate c such that only a subset of {τ : w(τ)
τ = c} is in the policy. The remainder of the proof is

showing that such a policy can be improved to form a policy of the appropriate form.

Theorem 2.3.1. With a single state, for each w there exists a constant cw ∈ R+ such that the

policy σ∗ =
{
τ : w(τ)

τ ≥ cw
}

is optimal for the driver with respect to w.

Proof. Proof. Let γ(τ) , w(τ)
τ . Assume that F ({τ : w(τ) > 0}) > 0. Otherwise any policy is

optimal and so the result is trivial.

Start at σ ((0,∞). We first show that there exists c ∈ R+ such that σc = {τ : γ(τ) ≥ c} or

σc = {τ : γ(τ) > c}, where R(w, σc) ≥ R(w, σ). Assume that 0 < F ({τ : w(τ) > 0} ∩ σ) < 1. (If

F ({τ : w(τ) > 0} ∩ σ) is either 0 or 1, we are done, as R((0,∞)) ≥ R(w, σ) and is of the desired

form.)

1. First we construct σ̃c = {τ : γ(τ) > c}∪C, where C ⊆ {τ : γ(τ) = c} and R(w, σ̃c) ≥ R(w, σ).

For the given σ, c, let

Ac = {τ : τ /∈ σ, γ(τ) ≥ c}
Bc = {τ : τ ∈ σ, γ(τ) < c}

L(X) =

∫

x∈X
τdF (τ) X ⊆ (0,∞)

Ac is a set of trips that pay more than c per unit time but are not in σ, and Bc is the set of the

trips that pay less than c per unit time but are not in σ. L(X) is the mean extra utilization

that trips in X contribute in a renewal cycle. The idea is that if we find sets A,B such that

L(A) = L(B) > 0 and γ(a) > γ(b),∀a ∈ A, b ∈ B, then σ′ = σ∪A\B =⇒ R(w, σ′) > R(w, σ):

the denominator of the reward stays the same, and the numerator increases. A few facts that

follow from assumptions:

� L(A0) > 0

� ∃c : L(Bc) > 0

� L(Bc) is non-decreasing as c increases, and L(B0) = 0

� L(Ac) is non-increasing as c increases, and limc→∞ L(Ac) = 0

� L(Ac), L(Bc) both are continuous from the left in c.

� The above imply that ∃c′ such that L(Ac) < L(Bc),∀c > c′.

� Thus, there exists c0 = max{c′ : L(Ac′) ≥ L(Bc′)}

138 APPENDIX A. DRIVER SURGE PRICING

If L(Ac0) = L(Bc0), then we are done with this part: let σ̃c0 = σ ∪Ac0 \Bc0 = {τ : γ(τ) ≥ c}.

Otherwise if L(Ac0) > L(Bc0) (which can happen if there is a mass of positive probability at

the set {τ : γ(τ) = c}.):

� By the definition of c0, for all c > c0 we have L(Ac) < L(Bc). Then

L(Bc0) < L(Ac0) < L(Bc0) + L({τ : τ ∈ σ, γ(τ) = c0})

� let C ⊆ {τ : τ ∈ σ, γ(τ) = c0} such that L(C) + L(Bc0) = L(Ac0). Such C exists by F

continuous.

� Let σ̃c0 = σ ∪Ac0 \ (C ∪Bc0)

We now have σ̃c0 = {τ : γ(τ) ≥ c0} \ C, where C ⊆ {τ : τ ∈ σ, γ(τ) = c0}, and R(w, σ̃c0) >

R(w, σ), unless σ already was of the form σ̃c0 for some c0.

2. Next, we construct σc0 = {τ : γ(τ) ≥ c0} or σc0 = {τ : γ(τ) > c0} such that R(w, σc0) ≥
R(w, σ).

� Suppose c0 ≥ R(w, σ̃c0). Then

R(w, {τ : γ(τ) ≥ c0}) =
λ
∫
τ∈σ̃c0

w(τ)dF (τ) + λ
∫
τ∈C w(τ)dF (τ)

1 + λ
∫
τ∈σ̃c0

τdF (τ) + λ
∫
τ∈C τdF (τ)

≥ R(w, σ̃c0) (A.3)

Where the inequality follows from R(w, σ̃c0) =
λ
∫
τ∈σ̃c0

w(τ)dF (τ)

1+λ
∫
τ∈σ̃c0

τdF (τ)
,

λ
∫
τ∈C w(τ)dF (τ)

λ
∫
τ∈C τdF (τ)

=
λ
∫
τ∈C

w(τ)
τ τdF (τ)

λ
∫
τ∈C τdF (τ)

= c0, and w
y ≤ x

z =⇒ w+x
y+z ≥ w

y .

Then let σc0 = {τ : γ(τ) ≥ c0}

� Similarly, suppose c0 < R(w, σ̃c0). Then

R(w, {τ : γ(τ) > c0}) =
λ
∫
τ∈σ̃c0

w(τ)dF (τ)− λ
∫
τ∈{τ :τ∈σ,γ(τ)=c0}\C w(τ)dF (τ)

1 + λ
∫
τ∈σ̃c0

τdF (τ)− λ
∫
τ∈{τ :τ∈σ,γ(τ)=c0}\C τdF (τ)

> R(w, σ̃c0) (A.4)

Where the inequality follows from w
y >

x
z =⇒ w−x

y−z >
w
y .

Then let σc0 = {τ : γ(τ) > c0} (choosing arbitrarily if c0 = R(w, σ̃c0)).

A.3. PROOFS OF SINGLE STATE MODEL RESULTS 139

Thus, we have shown that for all σ, there exists σc0 = {τ : γ(τ) > c0} or σc0 = {τ : γ(τ) ≥ c0} such

that R(w, σc0) ≥ R(w, σ).

Let σ>c = {τ : γ(τ) > c}, and σ≥c = {τ : γ(τ) ≥ c}. We finish the proof by showing that ∃c∗ such

that ∀c,R(w, σ≥c∗) ≥ max(R(w, σ≥c), R(w, σ>c)).

By assumption of w(τ)/τ , the reward is bounded: 0 ≤ R(w, σ>c), 0 ≤ R(w, σ≥c); further, there

exists C such that ∀c > C: R(w, σ>c) < R((0,∞)), R(w, σ≥c) < R((0,∞)) (which follows from F a

i.e., , and so as c→∞, F ({τ : γ(τ) ≥ c})→ 0.

Further, R(w, σ>c) is continuous from the right in c, and R(w, σ≥c) is continuous from the left in

c, and the two functions have the same points of discontinuities: c such that F ({τ : γ(τ) = c}) > 0

(and these are their only points of disagreement). Thus, the function max(R(w, σ≥c), R(w, σ>c)) of c

attains its maximum at some c∗ ∈ [0, C].

In other words, there exists c∗ such that ∀c,max(R(w, σ≥c∗), R(w, σ>c∗)) ≥ max(R(w, σ≥c), R(w, σ>c)).

We finish by proving that R(w, σ≥c∗) ≥ R(w, σ>c∗).

� Suppose c∗ ≥ R(w, σ>c∗). Then, by the same argument as line (A.3), R(w, σ>c∗) ≤ R(w, σ≥c∗).

� Suppose c∗ < R(w, σ>c∗).

– If ∃B : c∗ < B such that the mass F ({τ : γ(τ) ∈ (c∗, B]}) = 0, then note that σ>c∗ is equal

to σ≥B up to a set of measure 0, and so R(w, σ>c∗) = R(w, σ≥B).

– Otherwise, let B : c∗ < B < R(w, σ>c∗), and note that F ({τ : γ(τ) ∈ (c∗, B]}) > 0. Then,

by the same argument as in line (A.4), R(w, σ>c∗) < R(w, σ>B) ≤ max(R(w, σ≥c∗), R(w, σ>c∗)) =

R(w, σ≥c∗).

Thus, R(w, σ≥c) ≥ R(w, σ>c∗), for some c.

Thus, for some c∗, the policy σ≥c∗ = {τ : γ(τ) ≥ c∗} is optimal. �

A.3.3 Proof of Proposition 2.3.1

With a single state, w(τ) = mτ + a is incentive compatible if 0 ≤ a ≤ m
λ .

Proof. Proof. Let T =
∫
τ∈(0,∞)

τdF (τ). Let σ′ = (0,∞) \ σ, for some σ.

R((0,∞)) =
λ
∫
τ∈(0,∞)

w(τ)dF (τ)

1 + λT

R(σ′) =
λ
∫
τ∈(0,∞)

w(τ)dF (τ)− λ
∫
τ∈σ w(τ)dF (τ)

1 + λT − λ
∫
τ∈σ τdF (τ)

=⇒ R((0,∞)) ≥ R(σ′) ⇐⇒
λ
∫
τ∈(0,∞)

w(τ)dF (τ)

1 + λT
≤
∫
τ∈σ w(τ)dF (τ)∫
τ∈σ τdF (τ)

Where the last line follows from w
y ≥ w−x

y−z ⇐⇒ w
y ≤ x

z .

140 APPENDIX A. DRIVER SURGE PRICING

Thus, a necessary and sufficient condition for incentive compatibility is that

λ
∫
τ∈(0,∞)

w(τ)dF (τ)

1 + λT
≤
∫
τ∈σ w(τ)dF (τ)∫
τ∈σ τdF (τ)

∀σ.

Suppose w(τ) = mτ + a. Then, for 0 ≤ a ≤ m
λ :

λ
∫
τ∈(0,∞)

w(τ)dF (τ)

1 + λT
=
λ(mT + a)

1 + λT

≤ m(λT + 1)

1 + λT
= m a ≤ m

λ

≤ m+ a

[
F (σ)∫

τ∈σ τdF (τ)

]
∀σ a ≥ 0

=

∫
τ∈σ w(τ)dF (τ)∫
τ∈σ τdF (τ)

�

A.3.4 Uniqueness of optimal policy for single-state model

Lemma A.3.1. Consider the single-state model, and optimal policy σ∗ of the form σ∗ = {τ : w(τ)
τ ≥

c∗}. Then, R(σ∗) = c∗. Further, other policies of the form σc = {τ : w(τ)
τ ≥ c} are not optimal

unless σc = σ∗ (up to sets of measure 0).

Proof. Proof. By Theorem 2.3.1, there exists an optimal policy of the form σ∗ = {τ : w(τ)
τ ≥ c∗},

for some c∗. Here, we show (1) that R(σ∗) = c∗, and (2) this is the unique optimal policy of the

form σ∗ = {τ : w(τ)
τ ≥ c}.

1. R(σ∗) = c∗. The proof is identical to lines (A.3), (A.4).

Suppose R(σ∗) > c∗. Then, consider c = R(σ∗), σc = {τ : w(τ)
τ ≥ c}. If F (σ∗ \ σc) > 0:

R(σc) =
λ
∫
τ∈σ∗ w(τ)dF (τ)− λ

∫
τ∈σ∗\σc w(τ)dF (τ)

1 + λ
∫
τ∈σ∗ τdF (τ)− λ

∫
τ∈σ∗\σc τdF (τ)

> R(σ∗)

Which follows from
λ
∫
τ∈σ∗\σc w(τ)dF (τ)

λ
∫
τ∈σ∗\σc τdF (τ)

< c = R(σ∗) =
λ
∫
τ∈σ∗ w(τ)dF (τ)

1+λ
∫
τ∈σ∗ τdF (τ)

, and x
z < w

y =⇒
w−x
y−z >

w
y . This contradicts that σ∗ is optimal.

Similarly, suppose R(σ∗) < c∗. Then, consider c = R(σ∗), σc = {τ : w(τ)
τ ≥ c}. If F (σc \σ∗) >

A.4. PROOFS OF DYNAMIC MODEL RESULTS 141

0:

R(σc) =
λ
∫
τ∈σ∗ w(τ)dF (τ) + λ

∫
τ∈σc\σ∗ w(τ)dF (τ)

1 + λ
∫
τ∈σ∗ τdF (τ) + λ

∫
τ∈σc\σ∗ τdF (τ)

> R(σ∗)

Which follows from
λ
∫
τ∈σc\σ∗ w(τ)dF (τ)

λ
∫
τ∈σc\σ∗ τdF (τ)

> c = R(σ∗) =
λ
∫
τ∈σ∗ w(τ)dF (τ)

1+λ
∫
τ∈σ∗ τdF (τ)

, and x
z > w

y =⇒
w+x
y+z >

w
y . This contradicts that σ∗ is optimal.

2. Suppose there were two optimal σc1 , σc2 of the appropriate form. Without loss of generality,

let c1 < c2. Suppose F (σc1 \ σc2) > 0, and so σc1 (σc2 . By the previous part, R(σc1) =

c1, R(σc2) = c2. Then

R(σc2) =
λ
∫
τ∈σc1

w(τ)dF (τ)− λ
∫
τ∈σc1\σc2

w(τ)dF (τ)

1 + λ
∫
τ∈σc1

τdF (τ)− λ
∫
τ∈σc1\σc2

τdF (τ)

< R(σc1)

Which follows from
λ
∫
τ∈σc1\σc2

w(τ)dF (τ)

λ
∫
τ∈σc1\σc2

τdF (τ)
> c1 = R(c1) =

λ
∫
τ∈σc1

w(τ)dF (τ)

1+λ
∫
τ∈σc1

τdF (τ)
, and x

z >
w
y =⇒

w
y >

w−x
y−z , contradicting the supposition that R(σc1) = c1 < c2 = R(σc2).

�

A.4 Proofs of dynamic model results

In this section, we provide proofs of the theorems and lemmas in the main text regarding the dynamic

model. Section A.4.1 contains proofs for the dynamic model lemmas regarding driver reward and

time spent in each state, Lemmas 2.2.1, 2.4.1, and 2.4.2.

Section A.4.2 contains an overview of the proof strategy for both Theorems 2.3.2 and 2.4.1, and

in particular provides a statement of the main technical lemma used to prove both theorems. The

proof for this lemma is deferred to Section A.4.5.

Section A.4.3 contains the statements of several appendix-only lemmas that are used to prove

the main results. Proofs for these lemmas are deferred to Section A.4.6, as they are algebraically

tedious.

Finally, Section A.4.4 contains the proofs for our main results, Theorems 2.3.2 and 2.4.1.

142 APPENDIX A. DRIVER SURGE PRICING

A.4.1 Driver reward

Lemma 2.2.1. In the dynamic model, the earnings rate can be decomposed into each state i earnings

rate Ri(wi, σi) and fraction of time µi(σ) spent in state i:

R(w, σ) = µ1(σ)R1(w1, σ1) + µ2(σ)R2(w2, σ2) with probability 1.

As in the single-state model, Ri(wi, σi) = Wi(σi)
Ti(σi)

, where

Wi(σi) =
1

Fi(σi)

∫

τ∈σi
wi(τ)dFi(τ), Ti(σi) =

1

λiFi(σi)
+

1

Fi(σi)

∫

τ∈σi
τdFi(τ)

Proof. Proof. Consider the renewal process (with cycles and sub-cycles) defined in the main text.

We use the following notation

� M(t) is the total number of cycles that have been completed up to time t

� Nj(M) is the number of sub-cycles in state j in the Mth cycle – i.e., in the Mth cycle of the

single renewal process described above, the number of times that the driver is open in state j

(after transitioning from the other state, or finishing a trip that started in the same state j)

� Sj(k,M) is the length of the kth such sub-cycle in the Mth cycle, with expected length Sj(σj)

� Wj(k,M) is the earnings of the driver in the kth such sub-cycle in the Mth cycle, with expected

value Wj(σj)

� pji(σj) is the probability that the current sub-cycle is the last in state j for the current cycle

– as the next sub-cycle starts in the other state.

� Rj(wj , σj ,M) is the total amount earned in state j after M such cycles

Then:

Rj(wj , σj ,M(t)) =

M(t)∑

M=1

Nj(M)∑

k=1

Wj(k,M)

lim
t→∞

Rj(wj , σj ,M(t))

M(t)
= lim
t→∞

1

M(t)



M(t)∑

M=1

Nj(M)∑

k=1

Wj(k,M)




=
1

pji(σj)
Wj(σj) almost surely

by the mean of a geometric random variable (1
pji(σj)

is the expected number of sub-cycles in j in a

given cycle) and the basic law of large numbers for renewal processes.

A.4. PROOFS OF DYNAMIC MODEL RESULTS 143

Similarly, we know that M(t)
t converges to its mean almost surely as t→∞, where the mean is

based on the length of time in each state in each cycle. Let S̃(σ) be the expected length of one of

these cycles. Then:

lim
t→∞

M(t)

t
=

1

S̃(σ)

S̃(σ) = E



N1(1)∑

k=1

S1(k, 1)


+ E



N2(1)∑

k=1

S2(k, 1)




= E[N1(1)]E[S1(k, 1)] + E[N2(1)]E[S2(k, 1)] Wald’s identity

=
1

p12(σ1)
S1(σ1) +

1

p21(σ2)
S2(σ2)

=⇒ lim
t→∞

M(t)

t
=

p21(σ2)p12(σ1)

p21(σ2)S1(σ1) + p12(σ1)S2(σ2)

Then, by standard algebra on multiplication with almost sure convergence

lim
t→∞

Rj(wj , σj ,M(t))

t
= lim
t→∞

Rj(wj , σj ,M(t))

M(t)

M(t)

t

=
1

pji(σj)
Wj(wj , σj)

[
p21(σ2)p12(σ1)

p21(σ2)S1(σ1) + p12(σ1)S2(σ2)

]

=

[
pij(σi)Sj(σj)

p21(σ2)S1(σ1) + p12(σ1)S2(σ2)

]
Rj(wj , σj)

Let µj(σ) , pij(σi)Sj(σj)
p21(σ2)S1(σ1)+p12(σ1)S2(σ2) . Putting everything together:

lim inf
t→∞

R(w, σ, t)

t
= lim inf

t→∞

R1(w1, σ1,M(t))

t
+ lim inf

t→∞

R2(w2, σ2,M(t))

t

= µ1(σ)R1(w1, σ1) + µ2(σ)R2(w2, σ2)

�

Lemma 2.4.1. Suppose the world is in state i at time t. Let qi→j(s) denote the probability that the

world will be in state j 6= i at time t+ s. Then,

qi→j(s) =
λi→j

λi→j + λj→i

[
1− e−(λi→j+λj→i)s

]

Proof. Proof. Given the state dynamics in the model, qi→j(s) is determined by the evolution of a

CTMC in time s, given that the current state is i. We can use standard CTMC results here. Let Q

144 APPENDIX A. DRIVER SURGE PRICING

denote the Q-matrix for the world state CTMC. From the model definition,

Q =

[
−λ1→2 λ1→2

λ2→1 −λ2→1

]

Recall that the state transition matrix after time t is then given by the matrix exponential eQt,

which is equal to the inverse of the Laplace transform of the inverse of the resolvent of Q:

qi→j(τ) = (eQτ)ij

= L−1((wI −Q)−1
ij)(τ) w is a Laplace transform parameter

=
λi→j

λi→j + λj→i

[
1− e−(λi→j+λj→i)τ

]

where the closed form in the last line emerges due to the 2 state model assumption. �

Lemma 2.4.2. Let Ti(σi) be as defined in Lemma 2.2.1. The fraction of time a driver following

strategy σ = {σ1, σ2} spends either open in state i or on a trip started in state i is

µi(σ) =
λiFi(σi)Ti(σi)Qj(σj)

λjFj(σj)Tj(σj)Qi(σi) + λiFi(σi)Ti(σi)Qj(σj)

where Qi(σi) = λi→j + λi

∫

τ∈σi
qi→j(τ)dFi(τ)

Proof. Proof. From the proof of Lemma 2.2.1, we have

µi(σ) =
pji(σj)Si(σi)

p21(σ2)S1(σ1) + p12(σ1)S2(σ2)

where Si(σi) is the expected length of the time between being open in a state i to being open

again, either after a state transition or after finishing a job; and pij(σi) is the probability that the

driver is next open in state j given they are currently open in state i. These are:

Si(σi) =
1

λiFi(σi) + λi→j
+

λiFi(σi)

λiFi(σi) + λi→j

∫

τ∈σi
τ
fi(τ)

Fi(σi)
dτ

=
1

λiFi(σi) + λi→j

[
1 + λi

∫

τ∈σi
τdFi(τ)

]

=

[
λiFi(σi)

λiFi(σi) + λi→j

]
Ti(σi)

The first part of the sum 1
λiFi(σi)+λi→j

is the expected time until either the driver receives and

accepts a request, or the world state transitions to the other state. This form emerges because there

are two competing independent exponential clocks – that for a request and that for the world state

changing. The second part of the sum is the probability of receiving an accepted trip request before

A.4. PROOFS OF DYNAMIC MODEL RESULTS 145

a state transition, times the expected length of an accepted trip.

The next step is to find an expression for pij(σi), the probability that the next renewal cycle is

at state j, given the current one is at state i. We find it for j 6= i, and then pii = 1− pij .

pij(σ) =
λi→j

λiFi(σi) + λi→j
+

λiFi(σi)

λiFi(σi) + λi→j

1

Fi(σi)

∫

σi

qi→j(τ)dFi(τ)

=

[
1

λiFi(σi) + λi→j

]
Qi(σi)

The first part of the summation is the probability that the world state transitions to state j

before the driver accepts a trip request. The second part is the probability that the driver accepts

a trip request before the state transitions, times the probability qi→j(σi) = 1
Fi(σi)

∫
σi
qi→j(τ)dFi(τ)

that the world will be in state j when the driver’s trip ends. The result follows. �

A.4.2 Proof strategy for incentive compatible pricing and structural re-

sults

We now give an overview of the proof strategy for both Theorems 2.3.2 and 2.4.1. The key step

to both is Lemma A.4.1 below, which shows how to use properties of the derivative of a reward

function with respect to an element of a driver policy, to establish the structural properties of

optimal driver policies. Then, Section A.4.3 provides lemmas that help us establish the properties

of this derivative as they depend on the pricing function. We put things together in Section A.4.4

to prove Theorems 2.3.2 and 2.4.1. Proofs of Lemma A.4.1 and the lemmas in Section A.4.3 are in

Sections A.4.5 and A.4.6, respectively.

Lemma A.4.1. Consider a function R̂(σ) that maps open, measurable subsets σ = ∪∞k (`k, uk) ⊆
(0,∞) to the non-negative reals, and probability measure F such that F is continuous, i.e. f is

bounded.

Let ∂
∂u R̂(σ) denote the partial derivative of R̂ with respect to an upper end-point uk of the intervals

that make up σ = ∪∞k (`k, uk), i.e., it is the infinitesimal gain in the driver reward by adding u to

the driver policy.

Consider an open measurable subset σ′ ⊆ (0,∞). Suppose,

1. F (σ′) > 0, and R̂(σ′) > R̂(∅).

2. R̂(σ) is continuous in σ, and ∂
∂u R̂(σ) exists, for all σ and its endpoints uk.

3. ∂
∂u R̂(σ) is continuous in u, for each fixed σ.

4. ∂
∂u R̂(σ) is continuous in σ, for each fixed u.

146 APPENDIX A. DRIVER SURGE PRICING

Finally, suppose that there exists a function r(u, σ) that has the same sign as ∂
∂u R̂(σ), for all

u, σ and has one of the following properties. Then, each of the following hold, depending on the

properties of r(u, σ).

� Suppose r(u, σ) is non-negative for all u, σ. Then R̂((0,∞)) ≥ R̂(σ′).

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly increasing in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists a value `∗ ∈ R+ ∪ {∞} such that R̂((`∗,∞)) ≥ R̂(σ′).

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly quasi-convex in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists exist `∗, u∗ ∈ R+ ∪ {∞} such that R̂((0, `∗)∪ (u∗,∞)) ≥
R̂(σ′), and it is not the case that both `∗ = 0, u∗ =∞.

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly decreasing in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists a value u∗ ∈ R+ ∪ {∞} such that R̂((0, u∗)) ≥ R̂(σ′).

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly quasi-concave in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists exist `∗, u∗ ∈ R+ ∪ {∞} such that R̂((`∗, u∗)) ≥ R̂(σ′).

A.4.3 Necessary lemmas

Here we present lemmas necessary to prove the main theorems regarding incentive compatibility and

optimal driver policies. Proofs are deferred to Section A.4.6.

These lemmas primarily involve properties of derivatives of the reward function R(w, σ) and its

components in the dynamic model, as a function of the pricing.

Notation and assumptions

. Recall in the dynamic model that we constrain σi to be measurable, open, subsets of the R+.

Then, σi can be written as a countable union of disjoint subsets of R+, i.e. σi = ∪∞k=0(`k, uk). We

further assume that uk 6= `m, for any k,m; we can do so without loss of generality by making a

measure 0 change to σi, by adding uk = `m to σi.

Suppose u is an upper-endpoint of σi, ie. ∃k such that u = uk. Then, we use ∂
∂uH(σi) to denote

the derivative of the set function H with respect to u at σi. Similarly, ∂
∂`H(σi) is the derivative of

H at σi with respect to a lower-endpoint of σi.

Note that we also derive ∂
∂uR(w, {σ1, σ2}), ∂

∂`R(w, {σ1, σ2}). We will make it clear in each

instance whether u or ` is an endpoint of σ1 or σ2. For all the derivatives in this subsection ∂
∂u refers

to the derivative with respect to an upper endpoint in σi.

Furthermore:

� We use σ in the function argument when the function depends on policies in both states, and

σi when it only depends on the policy in state i.

A.4. PROOFS OF DYNAMIC MODEL RESULTS 147

� We use ∝ to denote has the same sign as, rather than proportional to

� All policy equalities are up to measure 0.

Let

∆(σi, σj) = Ri(wi, σi)−Rj(wj , σj).

Finally, when σi, σj are clear from context, let

Qi , Qi(σi) = λi→j + λi

∫

σi

qi→j(τ)dFi(τ)

Ti , λiFi(σi)Ti(σi) = 1 + λi

∫

τ∈σi
τdFi(τ)

Wi , λiFi(σi)Wi(σi) = λi

∫

τ∈σi
wi(τ)dFi(τ)

∆ji , ∆(σj , σi) = Rj(wj , σj)−Ri(wi, σi)

We assume throughout:

� Distribution of jobs F, Fi is a continuous probability measure, i.e., f, fi bounded.

� There exists a policy in state 2 that dominates state 1: ∃σ2 such that ∆(σ2, σ1) > 0,∀σ1 ⊆
(0,∞).

� σ, σi constrained to be measurable with respect to F, Fi, and σi are open.

Lemmas for driver policy in response to affine pricing

Lemma A.4.2. Let

r(u, i, w, σ) ,
qi→j(u)

u
∆ji +

wi(u)

u

(
Qi
Ti

+
Qj
Tj

)
−
(
Qi
Ti
Rj +

Qj
Tj
Ri

)

Then, ∂
∂uR(w, σ) ∝ r(u, i, w, σ).

In other words, r(u, i, w, σ) has the same sign as the derivative of the overall reward with respect

to u (an upper endpoint of σi) at w, σ, but it is not necessarily monotonic with it.

Remark A.4.1. Given assumptions on Fi, wi:

� Ri(σ), R(σ), µi are continuous in σ

�
∂
∂uR(w, σ), r(u, i, w, σ) are both continuous u (for fixed σ), and continuous in σ.

�

qi→j(u)
u is strictly decreasing in u.

148 APPENDIX A. DRIVER SURGE PRICING

� If ∆ji < 0 (i.e. i = 2 the surge state) and wi(u)
u is non-decreasing in u, then r(u, i, w, σ)

is strictly increasing in u for a fixed σ. Thus, ∂
∂uR(w, σ) is negative up to a certain point

U ∈ (0,∞) ∪ {∞} and then positive thereafter.

� If ∆ji > 0 (i.e. i = 1 the non-surge state) and wi(u)
u is non-increasing in u, then r(u, i, w, σ)

is strictly decreasing in u for a fixed σ. Thus, ∂
∂uR(w, σ) is positive up to a certain point

U ∈ (0,∞) ∪ {∞} and then negative thereafter.

�
∂
∂`R(w, σ) at a lower endpoint of σi is just the negative of the derivative at the same place if

a lower endpoint.

Lemma A.4.3. Suppose wi(τ) = mτ+a, where m, a > 0. Then, r(u, i, w, σ) is strictly quasi-convex

in u, for each fixed σ where ∆ji < 0.

Lemma A.4.4. Suppose wi(τ) = mτ + a, where m > 0 and a < 0. Then, r(u, i, w, σ) is strictly

quasi-concave in u, for each fixed σ where ∆ji > 0.

Lemmas for IC policy

Remark A.4.2.

Let wi(u) = mu+ zqi→j(u)

Then Wi = m(Ti − 1) + z(Qi − λi→j)
∂

∂u
R(w, σ) ∝ qi→j(u) [(Rj −m)TjTi +mTj + zQjTi + zTjλi→j]

+ u [QiTj(m−Rj) +Qj(m− zQi + zλi→j)]

Remark A.4.3. limu→0
qi→j(u)

u = λi→j.

Proof. Proof. Simple application of L’Hopital’s rule.

lim
u→0

qi→j(u)

u
= lim
u→0

∂

∂u
qi→j(u) = lim

u→0

∂

∂u

λi→j
λi→j + λj→i

[
1− e−(λi→j+λj→i)u

]
= λi→j

�

Remark A.4.4. λi→jTi − Qi ≥ 0 and maximized when σi = (0,∞). Similarly, Qi ≥ 0 and

maximized when σi = (0,∞).

In the next lemma, we consider u an upper endpoint of σ2, and so ∂
∂uR(w = {w1, w2}, σ =

{σ1, σ2}) is a derivative with respect to an upper endpoint of σ2.

A.4. PROOFS OF DYNAMIC MODEL RESULTS 149

Lemma A.4.5. Fix arbitrary σ1, and thus Q1, T1, R1. Let Q̄2, T̄2 be the respective values of Q2, T2

at σ2 = (0,∞). Let w2(τ) = mτ + zq2→1(τ), where m > R1.

If

T1(λ2→1T̄2 − Q̄2)− (Q1 + T1λ2→1)(
Q1(λ2→1T̄2 − Q̄2) + λ2→1(Q1 + T1λ2→1)

) ≤ z

m−R1
≤ Q̄2T1 +Q1

Q1(Q̄2 − λ2→1)

Then ∂
∂uR(w, σ) ≥ 0, for all u, σ2. Furthermore, the constraint set is feasible regardless of the

primitives.

We can now do the same thing for the first state, assuming that w1(τ) is of the form w1(τ) =

mτ + zq1→2(τ), where now z ≤ and m = R2. In the next lemma, we consider u an upper endpoint

of σ1, and so ∂
∂uR(w = {w1, w2}, σ = {σ1, σ2}) is a derivative with respect to an upper endpoint of

σ1. Then,

Lemma A.4.6. Fix arbitrary σ2, and thus Q2, T2, R2. Let Q̄1, T̄1 be the respective values of Q1, T1

at σ1 = (0,∞). Let w1(τ) = mτ + zq1→2(τ), where m = R2.

If

− (T2λ1→2 +Q2)

Q2(λ1→2T̄1 − Q̄1) + λ1→2(T2λ1→2 +Q2)
≤ z

R2
≤ 1

(Q̄1 − λ1→2)

Then ∂
∂uR(w, σ) ≥ 0, for all u, σ1. Furthermore, the constraint set is feasible regardless of the

primitives.

A.4.4 Proofs of main results, Theorems 2.3.2 and 2.4.1

We are now ready to combine the results above to prove our main results. The following theorem

subsumes Theorem 2.3.2, (slightly expanding it to make it useful to prove Theorem 2.4.1).

Theorem A.4.1. Consider pricing function w = {w1, w2}, where i = 2 is the surge state as

defined. Then, there exists an optimal policy σ = {σ1, σ2} that maximizes R(w, σ), with the following

properties.

� Non-surge state driver optimal policy σ1:

– If w1(τ) = m1τ + a1, for a1 ≥ 0, then σ1 = (0, t1), for some t1 ∈ [0,∞) ∪ {∞}.

– If w1(τ) = m1τ − a1, for a1 > 0, then σ1 = (t2, t3), for some t2, t3 ∈ [0,∞) ∪ {∞}.

– If w1 such that ∂
∂uR(w, σ′ = {σ′1, σ′2}) ≥ 0 for all σ′, where u is an upper endpoint of an

interval that makes up σ′1, then σ1 = (0,∞).

� Surge state driver optimal policy σ2:

150 APPENDIX A. DRIVER SURGE PRICING

– If w2(τ) = m2τ − a2, for a2 ≥ 0, then σ1 = (t4,∞), for some t4 ∈ [0,∞).

– If w2(τ) = m2τ+a2, for a2 > 0, then σ1 = (0, t5)∪(t6,∞), for some t5, t6 ∈ [0,∞)∪{∞}.

– If w2 such that ∂
∂uR(w, σ′ = {σ′1, σ′2}) ≥ 0 for all σ′, where u is an upper endpoint of an

interval that makes up σ′2, then σ2 = (0,∞).

Proof. Proof. The proof strategy is as follows:

� Start with some arbitrary policy σ = {σ1, σ2}.

� With assumption on the surge state providing higher potential earnings, replace σ2 with a

policy that provides higher earnings in state 2 than σ1 does in state 1, without decreasing

total reward.

� Using Lemma A.4.1, replace σ1 with policy of the appropriate form, without decreasing total

reward.

� Using Lemma A.4.1, replace σ2 with policy of the appropriate form, without decreasing total

reward.

Let ∆(σi, σ−i) = Ri(σi)−Rj(σ−i), where σ−i , σ3−i. Let r(u, i, w, σ) be a function that has the

same sign as ∂
∂uR(w, σ), where u is an upper endpoint of an interval that is part of σi. In various

results above, we show

� (Remark A.4.1). ∆(σi, σ−i) > 0 and wi(τ)
τ non-decreasing implies r(u, i, w, σ) strictly increas-

ing in u ∈ σi.

� (Remark A.4.1). ∆(σi, σ−i) < 0 and wi(τ)
τ non-increasing implies r(u, i, w, σ) strictly decreas-

ing in u ∈ σi.

� (Lemma A.4.3). w(τ) = mτ + a for m, a > 0 and ∆(σi, σ−i) > 0 implies r(u, i, w, σ) is strictly

quasi-convex in u ∈ σi

� (Lemma A.4.4). w(τ) = mτ − a for m, a > 0 and ∆(σi, σ−i) < 0 implies r(u, i, w, σ) is strictly

quasi-concave in u ∈ σi

We need to show that there exists a σ of the appropriate form such that R(w, σ) ≥ R(w, σ′), for

all σ′.

Start with arbitrary σ′ = {σ′1, σ′2} where σ′1, σ
′
2 ⊆ R+ are open, measurable sets, but not of

the correct form in the theorem statement. Invoking the theorems in Section A.4.5 as appropriate,

we construct a sequence of changes to σ′ such that the overall reward does not decrease with each

change, and the sequence ends with a policy consistent with the theorem statement.

A.4. PROOFS OF DYNAMIC MODEL RESULTS 151

Step A First, we replace σ′2 with a policy σA2 such that R2(σA2) > R1(σ1),∀σ1. This allows us to

cite the appropriate theorems regarding the properties of the derivative of R, that only hold

when the surge state provides higher earnings than the non-surge state.

Let σA2 be such that ∆(σA2 , σ
′′
1) > 0, for all σ′′1 open and measurable, and σA2 ≥ σ′2. Such σA2

exists by our assumptions on Fi, wi. Then, let σA , {σA1 = σ′1, σ
A
2 }. R(w, σA) ≥ R(w, σ′):

time spent earning reward at the rate of R2(w2, σ
′
2) is replaced by time spent earning at rate

R1(w1, σ
′
1) or earning at rate R2(w2, σ

A
2); time spent earning at R1(w1, σ

′
1) may be replaced

by time earning at rate R2(w2, σ
A
2).

Step B Now, we replace σ1 with a policy that is of the appropriate form.

For i = 1: Let R̂(σ1) , R(w, {σ1, σ
A
2 }).

By Lemma A.4.1, there exists σB1 such that R(w, {σB1 , σA2 }) ≥ R(w, {σA1 , σA2 }), and σB1 is of

the required form according to the table. Let σB , {σB1 , σB2 = σA2 }.

Note that all the assumptions of the theorem are met for each appropriate case: σB2 such that

∆(σB2 , σ
′
1) > 0, ∀σ′1, and so the scaled derivatives remain decreasing / strictly quasi-concave

as necessary.

Step C For i = 2: Now, we replace σ2 with a policy that is of the appropriate form.

Let R̂(σ2) , R(w, {σB1 , σ2}).

By Lemma A.4.1, there exists σC2 such that R(w, {σB1 , σC2 }) ≥ R(w, {σB1 , σB2 }), and σC2 is of

the required form according to the table. Let σC , {σC1 = σB1 , σ
C
2 }.

Note that, in this step, we need to confirm the assumption that r(u, 2, w, σ) remaining strictly

increasing / strictly quasi-convex in u for a fixed σ, for all σ such that R̂(σ) ≥ R̂(σB2) or

F (σB2 \ σ ∪ σ \ σB2) < δ, for some δ > 0.

The chief concern is that because σ2 is changing within the appropriate theorem, ∆(σ2, σ
B
1)

may not remain greater than 0, and so this condition might not be met. However this is not the

case: ∆(σ2, σ
B
1) remains positive – by continuity, σ2 close to σB2 (by measure of set difference)

implies ∆(σ2, σ
B
1) positive. Furthermore

R̂(σ′′2) ≥ R̂(σB2) ⇐⇒ R(w, {σB1 , σ′′2}) ≥ R(w, {σB1 , σB2 }) definition of R̂

⇐⇒ π1R1(w1, σ
B
1) + π2R2(w2, σ

′′
2) ≥ πaR1(w1, σ

B
1) + πbR2(w2, σ

B
2) (πkpolicy dependent)

∆(σ2, σ
B
1) ≤ 0 =⇒ π1R1(w1, σ

B
1) + π2R2(w2, σ

′′
2) ≤ R1(w1, σ

B
1)

∆(σB2 , σ
B
1) > 0, πb > 0 =⇒ π1R1(w1, σ

B
1) + π2R2(w2, σ

′′
2) > R1(w1, σ

B
1)

By Step A, ∆(σB2 , σ
B
1) > 0, πb > 0, and so ∆(σ2, σ

B
1) ≤ 0 would be a contradiction for

R(w, σ) ≥ R̂(σB2).

152 APPENDIX A. DRIVER SURGE PRICING

Thus, we have constructed σ∗ = {σ∗1 = σC1 , σ
∗
2 = σC2 } such that σ∗1 , σ

∗
2 correspond to theorem

statement for the appropriate cases, respectively, and R(w, σ∗) ≥ R(w, σ), for all σ = {σ1, σ2} where

σ1, σ2 ⊆ R+ are open, measurable sets.

�

Theorem 2.4.1. Let R1 < R2 be target earning rates during non-surged and surge states, respec-

tively. There exist prices w = {w1, w2} of the form

wi(τ) = miτ + ziqi→j(τ),

where m1,m2, z2 ≥ 0 (but z1 may be either positive or negative), such that the optimal driver policy

is to accept every trip in the surge state and all trips up to a certain length in the non-surge state.

Furthermore, for R1

R2
∈ [C, 1], there exist fully incentive compatible prices of this form, where

C = 1− 1

T1

Q2(λ12T1 −Q1) +Q1(T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)
∈ [0, 1),

and Ti = λiFi(σi)Ti((0,∞)), and Qi = Qi((0,∞)).

Proof. Proof. Note that in the theorem statement we defined Qi, Ti as what we call Q̄i, T̄i in the

helper lemmas in Section A.4.3, i.e., they refer to their respective values when every trip is accepted.

Let w2(τ) = m2τ + z2q2→1(τ), and w1(τ) = m1τ + z1q1→2(τ).

From Lemmas A.4.5 and A.4.6 in Appendix Section A.4.3, the following constraints are sufficient

for these prices to have always positive derivatives, with respect to upper endpoints u of the intervals

that compose either σ1 or σ2:

T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1)

(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))
≤ z2

m2 −R1
≤ Q2T1 +Q1

Q1(Q2 − λ2→1)

m1 = R2

− (T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)
≤ z1

R2
≤ 1

(Q1 − λ1→2)

Now, applying Theorem A.4.1, the policy that accepts everything, σ = {(0,∞), (0,∞)}, is opti-

mal, given these constraints are satisfied, as the derivative is always positive.

Resulting constraints on R1, R2 These constraints limit R1, R2 with respect to each other.

From Remark A.4.2,

W2 = m2(T2 − 1) + z2(Q2 − λ2→1)

W1 = m1(T1 − 1) + z1(Q1 − λ1→2)

A.4. PROOFS OF DYNAMIC MODEL RESULTS 153

Given R2, what’s the range R1 can be to still have IC in state 1?

W1 ≤ R2

[
T1 − 1 +

[
1

(Q1 − λ1→2)
(Q1 − λ1→2)

]]

=⇒ R1

R2
≤ 1

W1 ≥ R2

[
T1 − 1−

[
(T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)

]
(Q1 − λ1→2)

]

=⇒ R1

R2
=
W1

T1

1

R2

≥ 1

T1

[
T1 − 1−

[
(T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)

]
(Q1 − λ1→2)

]

= 1− 1

T1

[
1 +

(T2λ1→2 +Q2)(Q1 − λ1→2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)

]

= 1− 1

T1

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2) + (T2λ1→2 +Q2)(Q1 − λ1→2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)

= 1− 1

T1

Q2(λ1→2T1 −Q1) +Q1(T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)
= C

What about incentive compatible pricing in state 2? If we only care about that state, can we

can support any ratio of payments:

Let z2 =
Q2T1 +Q1

Q1(Q2 − λ2→1)
(m2 −R1) , c(m2 −R1)

R2 =
1

T2
[m2(T2 − 1) + z2(Q2 − λ2→1)]

=⇒ R2

R1
=

1

R1T2
[m2(T2 − 1) + (m2 −R1)c(Q2 − λ2→1)]

→ 1− 1

T2
≤ 1 as m2 → R1

→∞ as m2 →∞

Thus, we can make the surge state IC for any ratio of payments R2

R1
≥ 1, i.e., R1

R2
≤ 1.

Now, suppose we want to achieve R1, R2 such that R1

R2
∈ [0, C]. From the previous line, we can

still set w2 such that every trip in state 2 is accepted (the derivative with respect to the surge policy

is positive everywhere). Then, setting z1 = 0, and m1 to meet R1, all trips up to a certain length

will be accepted in the non-surge state: By Remark A.4.1, ∂
∂uR(w, σ) is positive up to a certain

value and then negative after that, where u is an upper endpoint of σ1.Thus, by Theorem A.4.1, the

optimal policy is of the form σ = {(0, t1), (0,∞)}. �

154 APPENDIX A. DRIVER SURGE PRICING

A.4.5 Optimal policies as depend on derivatives

Here we prove how the optimal policies depend on the derivative of the reward function (whether

they are always positive, strictly increasing, strictly decreasing, strictly quasi-convex, or strictly

quasi-concave). In each setting, we start with some fixed set σ′, and then make a sequence of

changes to the policy that result in a set σ of the appropriate form. The set-up in each proof is

the same; only the exact changes made to improve the policy differ. These changes depend on the

structure of the derivative of the reward with respect to the endpoints of the sets that make up the

policy, ∂
∂uR(w, σ). The idea is that as long as the derivative can be shown to be non-negative for

some u that is an endpoint of σi, that policy can be locally modified to accept more trips while not

decreasing the overall reward function.

Lemma A.4.1. Consider a function R̂(σ) that maps open, measurable subsets σ = ∪∞k (`k, uk) ⊆
(0,∞) to the non-negative reals, and probability measure F such that F is continuous, i.e. f is

bounded.

Let ∂
∂u R̂(σ) denote the partial derivative of R̂ with respect to an upper end-point uk of the intervals

that make up σ = ∪∞k (`k, uk), i.e., it is the infinitesimal gain in the driver reward by adding u to

the driver policy.

Consider an open measurable subset σ′ ⊆ (0,∞). Suppose,

1. F (σ′) > 0, and R̂(σ′) > R̂(∅).

2. R̂(σ) is continuous in σ, and ∂
∂u R̂(σ) exists, for all σ and its endpoints uk.

3. ∂
∂u R̂(σ) is continuous in u, for each fixed σ.

4. ∂
∂u R̂(σ) is continuous in σ, for each fixed u.

Finally, suppose that there exists a function r(u, σ) that has the same sign as ∂
∂u R̂(σ), for all

u, σ and has one of the following properties. Then, each of the following hold, depending on the

properties of r(u, σ).

� Suppose r(u, σ) is non-negative for all u, σ. Then R̂((0,∞)) ≥ R̂(σ′).

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly increasing in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists a value `∗ ∈ R+ ∪ {∞} such that R̂((`∗,∞)) ≥ R̂(σ′).

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly quasi-convex in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists exist `∗, u∗ ∈ R+ ∪ {∞} such that R̂((0, `∗)∪ (u∗,∞)) ≥
R̂(σ′), and it is not the case that both `∗ = 0, u∗ =∞.

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly decreasing in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists a value u∗ ∈ R+ ∪ {∞} such that R̂((0, u∗)) ≥ R̂(σ′).

A.4. PROOFS OF DYNAMIC MODEL RESULTS 155

� Suppose ∃ε > 0 s.t. r(u, σ) is strictly quasi-concave in u (for a fixed σ), for all σ such that

R̂(σ) ≥ R̂(σ′)− ε. Then, there exists exist `∗, u∗ ∈ R+ ∪ {∞} such that R̂((`∗, u∗)) ≥ R̂(σ′).

Proof. Proof. The general approach is as follows: Start at subset σ′ ⊆ (0,∞) = ∪∞k (`k, uk) = ∪∞k ζk,

where the intervals are disjoint and ζk = (`k, uk) denotes the kth interval. (recall that any open

subset of R can be uniquely written as the countable union of such disjoint intervals).

Then, do the following:

1. Create a sequence σ′δ → σ′ (as δ → 0), where, for each δ, σ′δ is δ-close to σ′: F ((σ′ \σ′δ)∪ (σ′δ \
σ′)) < δ.

2. Show that there exists a σ∗ of the appropriate form (according to the property that holds

above), such that R̂(σ′δ) ≤ R(σ∗),∀δ.

By continuity of the set function R̂, this implies that R̂(σ′) ≤ R(σ∗).

The second step is the only one that differs substantially depending on the property of the

function r(u, σ).

Step one: a sequence σ′δ → σ′ Each σ′δ will be of the form σ′δ = (0, L)
(
∪Kk=1(`k, uk)

)
∪ (B,∞),

for some K,B,L that depend on δ. We construct a σ′δ such that F (σ′ \ σ′δ ∪ σ′δ \ σ′) < δ as follows:

� F is a finite (probability) measure, and so there exists K such that F (∪∞k=K+1(`k, uk)) < δ/2.

(Since F (σ′) ≤ 1, it follows by the Cauchy condition).

� Let B ∈ R s.t. F ((B,∞)) < δ/4. Let L ∈ R s.t. F ((0, L)) < δ/4. Such B,L exist by condition

on F .

� Set σ′δ = (0, L) ∪
(
∪Kk=1(`k, uk)

)
∪ (B,∞).

� For convenience, we re-index the disjoint intervals {ζk}K+2
k=1 such that they are in increasing

order, i.e. uk > `k ≥ uk−1,∀k > 1, starting at (0, L), with the last interval (B,∞). If there

exist any intervals such that `k = uk−1, replace them with the combined interval (`k−1, uk).

If {B,∞} overlaps with the last interval, combine them.

Step 2: showing that R̂(σ∗) ≥ R̂(σ′), where σ∗ = (0,∞) Now, starting at σ = σ′δ, we describe

a sequence of modifications to σ, such that each modification does not reduce the reward R̂(σ). The

limit of this sequence of modifications is a policy of the appropriate form, regardless of the starting

σ′δ. This shows that R̂(σ∗) ≥ R̂(σ′δ).

We now carry out this step separately for each case. The general argument is that the properties

force the derivative r(u, σ) to be positive at certain points, which allows expanding the policy until

a policy of the appropriate form is reached.

156 APPENDIX A. DRIVER SURGE PRICING

Setting where r(u, σ) is non-negative Let σ = ∪Kk=1(`k, uk), and note that `1 = 0 from

above. By supposition that ∂
∂u R̂(σ) is always non-negative in u, we can increase u1 (merging with

other intervals) without decreasing R̂(σ). Thus, we can keep increasing u1, and u1 → B, and so

R((0,∞)) ≥ R(σ′δ).

Setting where r(u, σ) is strictly increasing By suppositions, ∃δ0 small enough such that r(u, σ)

is strictly increasing for all σ such that R̂σ ≥ R̂(σ′δ), ∀δ < δ0. Suppose δ < δ0.

Now, starting at σ = σ′δ, the limit of the sequence of modifications is a policy σ∗ = (`∗,∞).

We continue to overload notation, with r(`, σ) indicating a function that has the same sign as

the derivative of a lower endpoint of σi.

By the supposition that r(u, σ) strictly increasing in u, we have:

r(`, σ) strictly decreasing

r(`1, σ) ≤ 0 =⇒ r(u1, σ) > 0 `1 < u1

≡ ∂

∂`1
R̂(σ) ≤ 0 =⇒ ∂

∂u1
R̂(σ) > 0 xf(x) ≥ 0

r(`1, σ) > 0 ⇐= r(u1, σ) ≤ 0

≡ ∂

∂`1
R̂(σ) > 0 ⇐=

∂

∂u1
R̂(σ) ≤ 0

Case 1: ∃ζ1, ζ2 ⊂ σ such that `2 > u1, |ζ1|, |ζ2|, i.e. there is more than one interval that

makes up σ, and ζ1, ζ2 are the first and second such intervals, respectively, with positive mass.

Then we make the following sequence of changes (forming new σ), depending on ∂
∂`1

R̂(σ), ∂
∂u1

R̂(σ):

Subcase 1A, ∂
∂u1

R̂(σ) > 0: Increase u1 until u1 = `2 (exit Case 1), or ∂
∂u1

R̂(σ) ≤ 0 (go to Case

1B).

Sub-subcase 1AA, ∂
∂`1

R̂(σ) < 0, `1 > 0: Simultaneously, decrease `1.

Sub-subcase 1AB, ∂
∂`1

R̂(σ) ≥ 0 or `1 = 0: Hold `1 fixed.

Subcase 1B, ∂
∂u1

R̂(σ) ≤ 0 =⇒ ∂
∂`1

R̂(σ) > 0: Increase `1 until `1 = u1 (exit Case 1), or ∂
∂`1

R̂(σ) ≤
0 (which implies ∂

∂u1
R̂(σ) > 0, i.e. go to Case 1A).

Each of these changes cannot decrease R̂(σ), due to the direction of the changes in u1, `1 and the

corresponding derivatives (and thus the scaled gradient remains strictly increasing by supposition).

Note that these subcases are mutually-exclusive, and one is true as long as ∃ζ1, ζ2 ⊂ σ, `2 > u1.

Further, note that u1 is increasing in Subcase 1A and constant in Subcase 1B. Thus, with `2 fixed

and bounded, eventually:

A.4. PROOFS OF DYNAMIC MODEL RESULTS 157

� `1 → u1, in Subcase 1B (i.e. the first interval collapses to mass 0). OR

� u1 → `2, in Subcase 1A (i.e. the first interval merges with the second).

Thus, this sequence of changes cannot decrease the reward, and results in there being one fewer

interval then before (after combining the bottom 2 intervals by adding the point u1 = `2 of 0

measure). Case 1 can be iteratively applied until there is just a single interval σ = (`′,∞).

Case 2: σ = (`′,∞), i.e. there is a single interval that makes up σ

By supposition, R̂(σ′) > R̂(∅) and so R̂((`′,∞)) > R̂(∅). Further R̂((`,∞)) is a continuous

function in `. Thus, there exists L such that ∀` > L, R̂((`′,∞)) > R̂((`,∞)).

Thus, there exists `∗ ∈ [0, L] such that R̂((`∗,∞)) ≥ R̂((`,∞)),∀` ∈ R+ ∪ {∞} (continuous

functions in a compact domain have a maximum).

Setting where r(u, σ) is strictly quasi-convex We show that there exists a σ∗ = (0, `∗) ∪
(u∗,∞), for some u∗, l∗ ∈ R+, such that R̂(σ′δ) ≤ R(σ∗),∀δ.

By suppositions, ∃δ0 small enough such that r(u, σ) is strictly quasi-convex for all σ such that

R̂σ ≥ R̂(σ′δ), ∀δ < δ0. Suppose δ < δ0.

Now, starting at σ = σ′δ, we describe a sequence of modifications to σ, such that each modification

does not reduce the reward R̂(σ). The limit of this sequence of modifications is the policy σ∗ =

(0, `∗) ∪ (u∗,∞), regardless of the starting σ′δ. This shows that R̂(σ∗) ≥ R̂(σ′δ).

Then, let σ′δ = ∪Kk=1(`k, uk), where ζk , (`k, uk).

The key step is noting that quasi-convexity of the transformed derivative implies that any σ with

three intervals ζ1, ζ2, ζ3 can be improved by eliminating the middle interval (or joining it with one

of the others).

Case 1: ∃ disjoint ζ1 = (0, u1), ζ2 = (`2, u2), ζ3 = (`3, u3), s.t. |ζ1|, |ζ2|, |ζ3| > 0, i.e. σ is

composed of at least three intervals, and ζ1, ζ2, ζ3 are the first three such intervals with positive

mass. (u3 may be ∞).

By supposition, the transformed derivative with respect to any of the upper end-points uk,

r(uk, σ), is strictly quasi-convex in u. Then, the transformed derivative with respect to any of the

lower end-points `k, r(`k, σ), is strictly quasi-concave in u, and further is the negative of r(u, σ)

when u = `k.

Then, we have:

∂

∂u1
R̂(σ) ≤ 0 and

∂

∂`3
R̂(σ) ≥ 0 =⇒ ∂

∂`2
R̂(σ) > 0 and

∂

∂u2
R̂(σ) < 0

∂

∂`2
R̂(σ) ≤ 0 or

∂

∂u2
R̂(σ) ≥ 0 =⇒ ∂

∂u1
R̂(σ) > 0 or

∂

∂`3
R̂(σ) < 0

Then we make the following sequence of changes (forming new σ):

158 APPENDIX A. DRIVER SURGE PRICING

Subcase 1A, ∂
∂u1

R̂(σ) ≤ 0 and ∂
∂`3

R̂(σ) ≥ 0 =⇒ ∂
∂`2

R̂(σ) > 0 and ∂
∂u2

R̂(σ) < 0: Increase `2 and

decrease u2 simultaneously until `2 = u2 (exit Case 1), ∂
∂u2

R̂(σ) ≥ 0, or ∂
∂`2

R̂(σ) ≤ 0 (go to

1B or 1C).

Subcase 1B, ∂
∂u1

R̂(σ) > 0: Increase u1 until u1 = `2 (exit Case 1), or ∂
∂u1

R̂(σ) ≤ 0 (go to 1A or

1C)

Subcase 1C, ∂
∂`3

R̂(σ) < 0: Decrease `3 until u2 = `3 (exit Case 1), or ∂
∂`3

R̂(σ) ≥ 0 (go to 1B or

1A).

Each of these changes strictly increase R̂(σ). 1B and 1C may both be true, in which case arbitrarily

decide between them. At least one of the three subcases is true as long as the Case 1 condition holds.

Thus, eventually:

� `2 = u2, in Subcase 1A (i.e. the middle interval collapses to mass 0). OR

� u1 = `2, in Subcase 1B (i.e. the first interval merges with the second). OR

� u2 = `3, in Subcase 1C (i.e. the third interval merges with the second).

Thus, this sequence of changes cannot decrease the reward, and result in there being one fewer

interval then before. Case 1 can be iteratively applied until there are just two intervals σ = (0, t1)∪
(t2,∞).

Case 2: σ = (0, t1) ∪ (t2,∞).

By supposition, R̂(σ′) > R̂(∅) and so R̂((0, t1) ∪ (t2,∞)) > R̂(∅) for t1 > 0 or t2 <∞.

Further R̂((0, t1) ∪ (t2,∞)) is a continuous function in t1, t2. Thus R̂((0, t1) ∪ (t2,∞)) → R̂(∅)
as t1 → 0, t2 →∞ together.

Further, R̂((0, t1) ∪ (t2,∞)) → R̂((0,∞)) as t1 → ∞, regardless of how t2 behaves. Similarly,

fixing t1, R̂((0, t1) ∪ (t2,∞))→ R̂((0, t1)) as t2 →∞.

� If R̂((0, t1) ∪ (t∗2(t1),∞)) is increasing for t1 > T1, for however t∗2(t1) behaves as a function of

t1 then R̂((0,∞)) ≥ R̂((0, t1) ∪ (t2,∞)),∀t1 > T1, t2.

� For any fixed t1, if R̂((0, t1) ∪ (t2,∞)) is increasing for t2 > T2, then R̂((0, t1)) ≥ R̂((0, t1) ∪
(t2,∞)),∀t2.

These limiting values eliminate the possible cases where t1 or t2 increasing to infinity, but the

asymptotic values at ∞ produce lower rewards, which would have implied that the maximum is not

achieved. Thus, either

1. ∃t∗1 ∈ (0,∞) : R̂((0, t∗1)) ≥ R̂((0, t1) ∪ (t2,∞)),∀t1, t2

2. ∃t∗1, t∗2 ∈ [0,∞) : R̂((0, t∗1) ∪ (t∗2,∞)) ≥ R̂((0, t1) ∪ (t2,∞)),∀t1, t2

A.4. PROOFS OF DYNAMIC MODEL RESULTS 159

Setting where r(u, σ) is strictly decreasing The proof is extremely similar to the strictly

increasing case. However, we now need to modify the starting σ′ so it does not contain an interval

(B,∞), and each case from above is duplicated but moves the policy in different directions.

When creating σ′δ from above, instead remove the interval B: set σ′δ = (0, L) ∪
(
∪Kk=1(`k, uk)

)
\

(B,∞).

Showing that ∃u∗ such that ∃δ0 : ∀δ < δ0, R̂(σ′δ) ≤ R̂((0, u∗)) By suppositions, ∃δ0 small

enough such that r(u, σ) is strictly decreasing for all σ such that R̂σ ≥ R̂(σ′δ), ∀δ < δ0. Suppose

δ < δ0.

Now, starting at σ = σ′δ, we describe a sequence of modifications to σ, such that each modification

does not reduce the reward R̂(σ). The limit of this sequence of modifications is a policy σ∗ = (0, u∗),

regardless of the starting σ′δ. This shows that R̂(σ∗) ≥ R̂(σ′δ).

We continue to overload notation, with r(`, σ) indicating a function that has the same sign as

the derivative of a lower endpoint of σi. By the supposition that r(u, σ) strictly decreasing in u, we

have:

r(`, σ) strictly increasing

r(uK , σ) ≥ 0 =⇒ r(`K , σ) < 0 `1 < u1

≡ ∂

∂uK
R̂(σ) ≥ 0 =⇒ ∂

∂`K
R̂(σ) < 0 xf(x) ≥ 0

r(uK , σ) < 0 ⇐= r(`K , σ) ≥ 0

≡ ∂

∂uK
R̂(σ) < 0 ⇐=

∂

∂`K
R̂(σ) ≥ 0

Case 1: ∃ζK−1, ζK ⊂ σ such that `K > uK−1, |ζK |, |ζK−1|, i.e. there is more than one inter-

val that makes up σ, and ζK , ζK−1 are the last two such intervals, respectively, with positive mass.

Then we make the following sequence of changes (forming new σ), depending on ∂
∂`K

R̂(σ), ∂
∂uK

R̂(σ):

Subcase 1A, ∂
∂`K

R̂(σ) < 0: Decreasing `K until `K = uK−1 (exit Case 1), or ∂
∂`K

R̂(σ) ≥ 0 (go to

Case 1B).

Sub-subcase 1AA, ∂
∂uK

R̂(σ) > 0: Simultaneously, increase uK .

Sub-subcase 1AB, ∂
∂uK

R̂(σ) ≤ 0: Hold uK fixed.

Subcase 1B, ∂
∂`K

R̂(σ) ≥ 0 =⇒ ∂
∂uK

R̂(σ) < 0: Decrease uK until uK = `K (exit Case 1), or ∂
∂uK

R̂(σ) ≥
0 (which implies ∂

∂`K
R̂(σ) < 0, i.e. go to Case 1A).

160 APPENDIX A. DRIVER SURGE PRICING

Each of these changes cannot decrease R̂(σ), due to the direction of the changes in `K , uK and the

corresponding derivatives (and thus the scaled gradient remains strictly increasing by supposition).

Note that these subcases are mutually-exclusive, and one is true as long as ∃ such ζK , ζK−1 ⊂ σ.

Further, note that `K is decreasing in Subcase 1A and constant in Subcase 1B. Thus, eventually:

� uK → `K , in Subcase 1B (i.e. the last interval collapses to mass 0). OR

� `K → uK−1, in Subcase 1A (i.e. the last interval merges with the second to last).

Thus, this sequence of changes cannot decrease the reward, and results in there being one fewer

interval then before Case 1 can be iteratively applied until there is just a single interval σ = (0, u′).

Case 2: σ = (0, u′), i.e. there is a single interval that makes up σ By supposition, R̂((0, u))

is a continuous function for u ∈ [0,∞) ∪ {∞}. Further, ∂
∂u R̂((0, u)) is strictly decreasing for all

u such that R̂((0, u)) ≥ R̂((0, u′)). If ∂
∂u R̂((0, u)) > 0,∀u, then u∗ = ∞ is optimal. Otherwise if

∂
∂u R̂((0, u)) < 0∀u, then u∗ is optimal. Otherwise ∃u∗ ∈ (0,∞) such that R̂(σ∗) ≥ R̂(σ′).

Setting where r(u, σ) is strictly quasi-concave The proof is extremely similar to the strictly

quasi-convex case. However, we now need to modify the starting σ′ so it does not contain an intervals

(0, L) or (B,∞).

Let σ′δ =
(
∪Kk=1(`k, uk)

)
\ (0, L) \ (B,∞). Now, starting at σ = σ′δ, we describe a sequence of

modifications to σ, such that each modification does not reduce the reward R̂(σ). The limit of this

sequence of modifications is the policy σ∗ = (`∗, u∗), regardless of the starting σ′δ.

Similar to before, the key step is noting that quasi-concavity of the transformed derivative implies

that any σ with two intervals ζ1, ζ2 can be improved by eliminating one (or joining the two).

Case 1: ∃ disjoint ζ1 = (`1, u1), ζ2 = (`2, u2), s.t. |ζ1|, |ζ2| > 0, i.e. σ is composed of at least

two intervals with positive mass, and ζ1, ζ2 are the first two such intervals.

By supposition, the transformed derivative with respect to any of the upper end-points uk,

r(uk, σ), is strictly quasi-concave in u. Then, the transformed derivative with respect to any of the

lower end-points `k, r(`k, σ), is strictly quasi-convex in u, and further is the negative of r(u, σ) when

u = `k.

Then, we have:

∂

∂`1
R̂(σ) ≤ 0 and

∂

∂`2
R̂(σ) ≤ 0 =⇒ ∂

∂u1
R̂(σ) > 0

∂

∂u1
R̂(σ) ≤ 0 =⇒ ∂

∂`1
R̂(σ) > 0 or

∂

∂`2
R̂(σ) > 0

Then we make the following sequence of changes (forming new σ):

A.4. PROOFS OF DYNAMIC MODEL RESULTS 161

Subcase 1A, ∂
∂`1

R̂(σ) ≤ 0 and ∂
∂`2

R̂(σ) ≤ 0 =⇒ ∂
∂u1

R̂(σ) > 0: Increase u1 until u1 = `2 (exit

Case 1) or ∂
∂u1

R̂(σ) ≤ 0 (go to 1B or 1C).

Subcase 1B, ∂
∂`1

R̂(σ) > 0: Increase `1 until u1 = `1 (exit Case 1), or ∂
∂`1

R̂(σ) ≤ 0 (go to 1A or

1C)

Subcase 1C, ∂
∂`2

R̂(σ) > 0: Increase `2 until u2 = `2 (exit Case 1), or ∂
∂`2

R̂(σ) ≤ 0 (go to 1B or

1A).

Each of these changes strictly increase R(σ). 1B and 1C may both be true, in which case arbitrarily

decide between them. At least one of the three subcases is true as long as the Case 1 condition holds.

Thus, eventually:

� `2 = u1, in Subcase 1A (i.e. the intervals combine). OR

� u1 = `1, in Subcase 1B (i.e. the first interval collapses to mass 0). OR

� u2 = `2, in Subcase 1C (i.e. the second interval collapses to mass 0).

Thus, this sequence of changes cannot decrease the reward, and result in there being one fewer

interval then before. Case 1 can be iteratively applied until there is just one interval σi = (t1, t2).

Case 2: σi = (t1, t2). Similar to the same case in the previous theorem.

Further R̂((t1, t2)) is a continuous function in t1, t2. Thus R̂((t1, t2))→ R̂(∅) as t1 → t2.

Further, R̂((t1, t2)) → R̂(∅) as t1 → ∞, regardless of how t2 ≥ t1 behaves. Similarly, fixing t1,

R̂((t1, t2))→ R̂((t1,∞)) as t2 →∞.

� If R̂((t1, t
∗
2(t1))) is increasing for t1 > T1, for however t∗2(t1) behaves as a function of t1 then

R̂(∅) ≥ R̂((t1, t2)),∀t1 > T1, t2.

� For any fixed t1, if R̂((t1, t2)) is increasing for t2 > T2, then R̂((t1,∞)) ≥ R̂((t1, t2)),∀t2 > T2.

These limiting values eliminate the possible cases where t1 or t2 increasing to infinity, but the

asymptotic values at ∞ produce lower rewards, which would have implied that the maximum is not

achieved. Thus, either

1. R̂(∅) ≥ R̂((t1, t2)),∀t1, t2

2. ∃t∗1 ∈ [0,∞) : R̂((t∗1,∞)) ≥ R̂((t1, t2)),∀t1, t2

3. ∃t∗1, t∗2 ∈ [0,∞) : R̂(t∗1, t
∗
2) ≥ R̂((t1, t2)),∀t1, t2

�

162 APPENDIX A. DRIVER SURGE PRICING

A.4.6 Proofs of appendix-only lemmas

Remark A.4.2.

Let wi(u) = mu+ zqi→j(u)

Then Wi = m(Ti − 1) + z(Qi − λi→j)
∂

∂u
R(w, σ) ∝ qi→j(u) [(Rj −m)TjTi +mTj + zQjTi + zTjλi→j]

+ u [QiTj(m−Rj) +Qj(m− zQi + zλi→j)]

Proof. Proof.

wi(u) = mu+ zqi→j(u) m, z ≥ 0

Wi = λi

∫

τ∈σi
wi(τ)dFi(τ) = λi

∫

τ∈σi
[mτ + zqi→j(τ)] dFi(τ) = m(Ti − 1) + z(Qi − λi→j)

Then

WjTi − TjWi = RjTjTi −mTj(Ti − 1)− zTj(Qi − λi→j)
wi(u)(QiTj +QjTi) = (mu+ zqi→j(u))(QiTj +QjTi)

= qi→j(u)(zQiTj + zQjTi) + u(mQiTj +mQjTi)

∂

∂u
R(w, σ) ∝ qi→j(u) [WjTi − TjWi] + wi(u)(QiTj +QjTi)− u(QiWj +QjWi)

= qi→j(u) [RjTjTi −mTj(Ti − 1)− zTj(Qi − λi→j) + zQiTj + zQjTi]

+ u [mQiTj +mQjTi −QiRjTj −Qj(m(Ti − 1) + z(Qi − λi→j))]
= qi→j(u) [(Rj −m)TjTi +mTj + zQjTi + zTjλi→j]

+ u [QiTj(m−Rj) +Qj(m− zQi + zλi→j)]

�

Remark A.4.4. λi→jTi − Qi ≥ 0 and maximized when σi = (0,∞). Similarly, Qi ≥ 0 and

maximized when σi = (0,∞).

Proof. Proof.

λi→jTi −Qi = λi→j

[
1 + λi

∫

τ∈σi
τdFi(τ)

]
− λi→j − λi

∫

σi

qi→j(τ)dFi(τ)

= λi

∫

τ∈σi
[λi→jτ − qi→j(τ)] dFi(τ)

A.4. PROOFS OF DYNAMIC MODEL RESULTS 163

λi→jτ − qi→j(τ) is increasing in τ :

∂

∂τ
[λi→jτ − qi→j(τ)] = λi→j −

[
λi→je

−(λi→j+λj→i)τ
]
≥ 0

and λi→j∗0−qi→j(0) = 0. Thus, the function being integrated is positive, and so λi→jTi−Qi > 0

and maximized when σi = (0,∞). Identical proof holds for Qi.

�

Lemma A.4.2. Let

r(u, i, w, σ) ,
qi→j(u)

u
∆ji +

wi(u)

u

(
Qi
Ti

+
Qj
Tj

)
−
(
Qi
Ti
Rj +

Qj
Tj
Ri

)

Then, ∂
∂uR(w, σ) ∝ r(u, i, w, σ).

Proof. Proof.

µi({σj , σ2}) =
QjTi

QjTi +QiTj

R(w, σ) = µ1(σ)R1(w1, σ1) + µ2(σ)R2(w2, σ2)

=

[
1

Q2T1 +Q1T2

]
[Q2W1 +Q1W2]

Ri(σi) =
Wi

Ti
∂

∂u
Qi =

∂

∂u

[
λi→j + λi

∫

τ∈σi
qi→j(τ)dFi(τ)

]
= λiqi→j(u)fi(u)

∂

∂u
Wi =

∂

∂u

[
λi

∫

τ∈σi
wi(τ)dFi(τ)

]
= λiwi(u)fi(u)

∂

∂u
Ti = λifi(u)u

164 APPENDIX A. DRIVER SURGE PRICING

∂

∂u
R(w, σ) =

[
λifi(u)

QiTj +QjTi

]
[[qi→j(u)Wj +Qjwi(u)]−R(w, σ)(uQj + qi→j(u)Tj)]

∝ [qi→j(u)Wj +Qjwi(u)]−R(w, σ)(uQj + qi→j(u)Tj)

∝ [qi→j(u)Wj +Qjwi(u)] (QiTj

+QjTi)− (QiWj +QjWi)(uQj + qi→j(u)Tj)

= qi→j(u)Wj(QiTj +QjTi) +Qjwi(u)(QiTj +QjTi)

− uQj(QiWj +QjWi)− qi→j(u)Tj(QiWj +QjWi)

∝ qi→j(u)WjTi + wi(u)(QiTj +QjTi)− u(QiWj +QjWi)− qi→j(u)TjWi

= qi→j(u) [WjTi − TjWi] + wi(u)(QiTj +QjTi)− u(QiWj +QjWi)

= uTiTj

[
qi→j(u)

u
(Rj −Ri) +

wi(u)

u

(
Qi
Ti

+
Qj
Tj

)
−
(
Qi
Ti
Rj +

Qj
Tj
Ri

)]

∝ qi→j(u)

u
∆ji +

wi(u)

u

(
Qi
Ti

+
Qj
Tj

)
−
(
Qi
Ti
Rj +

Qj
Tj
Ri

)
∆ji = Rj −Ri

, r(u, i, w, σ)

�

Lemma A.4.3. Suppose wi(τ) = mτ+a, where m, a > 0. Then, r(u, i, w, σ) is strictly quasi-convex

in u, for each fixed σ where ∆ji < 0.

Proof. Proof.

r(u, i, w, σ) =
c1a− c2qi→j(u)

u
+ c3 c1, c2 ≥ 0; c3 can be negative

A.4. PROOFS OF DYNAMIC MODEL RESULTS 165

Then, ∂
∂ur(u, i, w, σ)

=
∂

∂u

[
c1 − c2qi→j(u)

u
+ c3

]

=
1

u2

[
−uc2

∂

∂u
qi→j(u)− [c1 − c2qi→j(u)]

]

=
1

u2

[
−uc2

∂

∂u

[
α

α+ β

[
1− e−(α+β)u

]]
−
[
c1 − c2

[
α

α+ β

[
1− e−(α+β)u

]]]]

=
1

u2

[
−uc2

[
αe−(α+β)u

]
+ c2

[
α

α+ β

[
1− e−(α+β)u

]]
− c1

]

=
1

u2

[
−uc2

[
α

[∞∑

n=0

un(−1)n(α+ β)n

n!

]]
+ c2

[
α

α+ β

[
1−

[∞∑

n=0

un(−1)n(α+ β)n

n!

]]]
− c1

]

=
1

u2

[
c2α

α+ β

[∞∑

n=0

(−1)n+1un+1(α+ β)n+1

n!
+ 1 +

∞∑

n=0

un(−1)n+1(α+ β)n

n!

]
− c1

]

=
1

u2

[
c2α

α+ β

[∞∑

n′=1

(−1)n
′
un
′
(α+ β)n

′

(n′ − 1)!
+

∞∑

n=1

un(−1)n+1(α+ β)n

n!

]
− c1

]
n′ = n+ 1

=
1

u2

[
c2α

α+ β

[∞∑

n=2

(−1)nun(α+ β)n
[

1

(n− 1)!
− 1

n!

]]
− c1

]

Where last line follows because first (n = 1) term of summation is zero.

Thus, r(u, i, w, σ) is strictly quasi-convex if c2α
α+β

[∑∞
n=2(−1)nun(α+ β)n

[
1

(n−1)! − 1
n!

]]
−c1 is strictly

increasing (derivative is strictly negative up to a point, and then strictly positive above that point

u, for a fixed σ.)

∂

∂u

[
c2α

α+ β

[∞∑

n=2

(−1)nun(α+ β)n
[

1

(n− 1)!
− 1

n!

]]
− c1

]

=
c2α

α+ β

[∞∑

n=2

(−1)nun−1(α+ β)n
[

n

(n− 1)!
− n

n!

]]

=
c2α

α+ β

[∞∑

n=2

(−1)nun−1(α+ β)n
1

(n− 2)!

]
=

c2α

α+ β

[∞∑

n′=0

(−1)n
′+2un

′+1(α+ β)n
′+2 1

n′!

]
n′ = n− 2

= c2αu(α+ β)

[∞∑

n=0

(−1)nun(α+ β)n
1

n!

]
= c2αu(α+ β)e−(α+β)u > 0

�

Lemma A.4.4. Suppose wi(τ) = mτ + a, where m > 0 and a < 0. Then, r(u, i, w, σ) is strictly

quasi-concave in u, for each fixed σ where ∆ji > 0.

Proof. Proof. Corollary of Lemma A.4.3. r(u, i, w, σ) is the negative of the previous case, modulo

166 APPENDIX A. DRIVER SURGE PRICING

constants that do not affect quasi-concavity. �

Lemma A.4.5. Fix arbitrary σ1, and thus Q1, T1, R1. Let Q̄2, T̄2 be the respective values of Q2, T2

at σ2 = (0,∞). Let w2(τ) = mτ + zq2→1(τ), where m > R1.

If

T1(λ2→1T̄2 − Q̄2)− (Q1 + T1λ2→1)(
Q1(λ2→1T̄2 − Q̄2) + λ2→1(Q1 + T1λ2→1)

) ≤ z

m−R1
≤ Q̄2T1 +Q1

Q1(Q̄2 − λ2→1)

Then ∂
∂uR(w, σ) ≥ 0, for all u, σ2. Furthermore, the constraint set is feasible regardless of the

primitives.

Proof. Proof.

Suppose we have w2(u) = mu+ zq2→1(u), for some m > R1, z ≥ 0.

From Remark A.4.2,

∂

∂u
R(w, σ) ∝ u

[
q2→1(u)

u
[(R1 −m)T1T2 +mT1 + zQ1T2 + zT1λ2→1]

]

+ u [Q2T1(m−R1) +Q1(m− zQ2 + zλ2→1)]

T2, Q2 are functions of σ2.

As u→∞, the term in brackets in the first term goes to 0, and thus the first necessary condition

is to have the second term always positive.

If the second term is always positive, then the first term may be negative as long as it has a

smaller absolute value than the second term. As u → 0, the ratio between (absolute value of) the

first and second terms is maximized. Thus, the second necessary (and sufficient) condition is to have

the entire value positive when we take the limit of q2→1(u)
u as u→ 0.

These two conditions are sufficient for ∂
∂uR(w, σ) ≥ 0, for all u, σ2.

From the first condition, we need m, z such that:

Q2T1(m−R1) +Q1(m− zQ2 + zλ2→1) ≥ 0 ∀T1, Q1, Q2, R1

⇐⇒ z

m−R1
≤
Q2T1 + m

m−R1
Q1

Q1(Q2 − λ2→1)

A.4. PROOFS OF DYNAMIC MODEL RESULTS 167

From the second condition, and using Remark A.4.3 we need:

λ2→1 [(R1 −m)T1T2 +mT1 + zQ1T2 + zT1λ2→1] + [Q2T1(m−R1) +Q1(m− zQ2 + zλ2→1)] ≥ 0

⇐⇒ (m−R1)T1(Q2 − λ2→1T2) +m(Q1 + λ2→1T1) + zQ1(λ2→1T2 −Q2 + λ2→1) + zT1λ
2
2→1 ≥ 0

⇐⇒ z (Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1)) ≥ (m−R1)T1(λ2→1T2 −Q2)−m(Q1 + T1λ2→1)

⇐⇒ z

m−R1
≥

T1(λ2→1T2 −Q2)− m
m−R1

(Q1 + T1λ2→1)

(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))

Putting the conditions together, we need, for all Ti, Qi, Ri:

T1(λ2→1T2 −Q2)− m
m−R1

(Q1 + T1λ2→1)

(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))
≤ z

m−R1
≤
Q2T1 + m

m−R1
Q1

Q1(Q2 − λ2→1)

m > R1 by supposition, and so m
m−R1

> 1. Thus, the following is sufficient as the constraints

become tighter:

T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1)

(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))
≤ z

m−R1
≤ Q2T1 +Q1

Q1(Q2 − λ2→1)

⇐⇒
T1 − Q1+T1λ2→1

(λ2→1T2−Q2)

Q1 + λ2→1(Q1+T1λ2→1)
(λ2→1T2−Q2)

≤ z

m−R1
≤

T1 + Q1

Q2

Q1

(
1− λ2→1

Q2

)

It turns out that both constraints are tightest when σ2 = (0,∞). In the left constraint, the

numerator is increasing and the denominator is decreasing with λ2→1T2−Q2, and so the constraint

becomes tighter as λ2→1T2 −Q2 increases. By Remark A.4.4, λ2→1T2 −Q2 is always positive, and

maximized when σ2 = (0,∞). Similarly, in the right constraint, the numerator decreases and the

denominator increases with Q2.

Thus, it is sufficient for the two constraints to be feasible for σ2 = (0,∞). Then, they are satisfied

for all σ′2. For feasibility, we need

T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1)

(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))
≤ Q2T1 +Q1

Q1(Q2 − λ2→1)

⇐⇒ (T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1))Q1(Q2 − λ2→1)

≤ (Q2T1 +Q1)(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))

⇐⇒ Q1Q2(T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1))−Q1λ2→1(T1(λ2→1T2 −Q2)− (Q1 + T1λ2→1))

≤ Q2T1(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1)) +Q1(Q1(λ2→1T2 −Q2) + λ2→1(Q1 + T1λ2→1))

⇐⇒ Q1Q2(− (Q1 + T1λ2→1))−Q1λ2→1(T1(λ2→1T2 −Q2))

≤ Q2T1(λ2→1(Q1 + T1λ2→1)) +Q1(Q1(λ2→1T2 −Q2))

For any valid Qi, Ti, the left hand side of the final line is always non-positive, and the right hand

168 APPENDIX A. DRIVER SURGE PRICING

side is always non-negative, and thus there exists feasible ratios z
m−R1

.

�

Lemma A.4.6. Fix arbitrary σ2, and thus Q2, T2, R2. Let Q̄1, T̄1 be the respective values of Q1, T1

at σ1 = (0,∞). Let w1(τ) = mτ + zq1→2(τ), where m = R2.

If

− (T2λ1→2 +Q2)

Q2(λ1→2T̄1 − Q̄1) + λ1→2(T2λ1→2 +Q2)
≤ z

R2
≤ 1

(Q̄1 − λ1→2)

Then ∂
∂uR(w, σ) ≥ 0, for all u, σ1. Furthermore, the constraint set is feasible regardless of the

primitives.

Proof. Proof. Similar to previous proof. Suppose we have w1(u) = mu + zq1→2(u), for some

m = R2, z ≤ 0.

From Remark A.4.2,

∂

∂u
R(w, σ) =u

[
q1→2(u)

u
[(R2 −m)T1T2 +mT2 + zQ2T1 + zT2λ1→2]

]

+ u [Q1T2(m−R2) +Q2(m− zQ1 + zλ1→2)]

=u

[
q1→2(u)

u
[R2T2 + zQ2T1 + zT2λ1→2] + [Q2(R2 − zQ1 + zλ1→2)]

]

As before, we have two necessary and sufficient conditions for ∂
∂uR(w, σ) ≥ 0, for all u, σ1.

From the first condition, we need m, z such that:

Q2(R2 − z(Q1 − λ1→2)) ≥ 0 ∀T2, Q2, Q1, R2

⇐⇒ z

R2
≤ 1

(Q1 − λ1→2)

This condition is trivially met when z ≤ 0.

Similarly, the second condition becomes

λ1→2 [R2T2 + zQ2T1 + zT2λ1→2] + [Q2(R2 − zQ1 + zλ1→2)] ≥ 0

⇐⇒ λ1→2R2T2 +Q2R2 ≥ −zQ2(λ1→2T1 −Q1)− zλ1→2(T2λ1→2 +Q2)

⇐⇒ z

R2
≥ − (T2λ1→2 +Q2)

Q2(λ1→2T1 −Q1) + λ1→2(T2λ1→2 +Q2)

Both constraints are tightest when σ1 = (0,∞). By Remark A.4.4, λ1→2T1 − Q1 is always

positive, and maximized when σ1 = (0,∞).

As one is non-negative and the other is non-positive, the constraints are feasible.

�

Appendix B

Designing Informative Rating

Systems: Evidence from an Online

Labor Market

B.1 Further analysis of the labor market test

In this section, we report more detail from the test on the online labor market. For much of this

section, we analyze a subset of the jobs: some job covariate information is missing in what was given

to us by the labor market. We have full covariate data for 100438 jobs (out of 184172).

B.1.1 Verifying randomization in allocation of clients

As noted in Section 3.3.3 of the main paper, there was a bug in the allocation code such that 1, 086

clients were assigned to different treatment cells upon submissions of different jobs. Since this could

potentially create contamination between our cells, we disregard these clients in our analysis. Here

we make sure that neither this bug nor any other affected experimental validity by checking the

distribution of client covariates across the treatment cells. We do so as follows.

We have a set of job level covariates for a subset of the jobs: hourly rate of job (if applicable),

total cost of project if not hourly (if applicable), previous number of closed jobs by client at time of

job, previous spend by client at time of job, value of the job (4 options), Tier 1 category (12 options),

Tier 2 category (88 options), and expertise level (3 options). The first four are continuous covariates,

and the last 4 are categorical covariates.

For each client, we sample one of that client’s jobs and associate the client with that job’s

covariates. Then we run tests of independence for the samples of each covariate across the treatment

169

170 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

cells. Across a variety of tests and all covariates, the results are consistent with the randomization

being valid.

� For each continuous covariate, using the Kruskal-Wallis H-test for independent samples on all

the treatment groups together, the null hypothesis that the population median of all of the

groups are equal is not rejected, with p > .9.

� Similarly, for each continuous covariate, using the one way ANOVA F test, the null hypothesis

that all the treatment groups have the same population mean is not rejected, with p > .2.

� For each categorical covariate, we run the chi-squared test of independence of variables in a

contingency table, which tests whether the observed frequencies of values is independent of

the treatment group. The null hypothesis is not rejected with p > .1, for each covariate.

These tests are consistent with fact that the allocation of valid clients we used for analysis across

treatment cells was truly random. Note that these tests do not check whether the invalid clients

(which we threw out) are similar to the valid clients. Invalid clients are more likely to be higher

volume clients, as those who submitted many jobs during the test period provided more chances for

the bug to manifest.

B.1.2 Robustness against high volume clients and allocation bug

Recall that in the main text we further threw out the 7 clients who submitted more than 200 jobs

during the test period (“heavy users”). However, the following may still be the case: idiosyncratic

rating behavior of medium-volume clients (over 50 or 100 jobs submitted) may be driving the dif-

ference in behavior between treatment cells. Here we show that this is not the case, as well as the

fact that throwing out the 7 heavy users was not consequential. We further show that including the

clients who were thrown out due to the allocation bug does not materially affect results.

In Figure B.1, we plot the rating distributions when only sampling 1 job/client, including 7

clients excluded for submitting at least 200 jobs during the test period, and using all jobs and clients

(even incorrectly allocated clients). The mean treatment responses are also included. Results are

similar.

Data sampling policy: From main text One job per client With outlier clients All clients, even incorrectly allocated

Expectations 3.339 3.243 3.354 3.350
Adjectives 3.650 3.597 3.650 3.651
Average 3.763 3.687 3.788 3.774
Average, not affect score 3.777 3.693 3.777 3.771
Average, Randomized 3.465 3.438 3.463 3.458
Numeric 3.594 4.534 4.635 4.639

Table B.1: Average treatment responses under different data policies

B.1. FURTHER ANALYSIS OF THE LABOR MARKET TEST 171

0 1 2 3 4 5

Answer Choice

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

(a) Sampling 1 job per client

0 1 2 3 4 5

Answer Choice

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

(b) Using all valid clients and jobs

0 1 2 3 4 5

Answer Choice

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

(c) Using all clients and jobs

Figure B.1: Rating distributions for different client sampling techniques. As in the main text, the
confidence intervals are 95% bootstrapped confidence intervals, with bootstrapped sampling at the
client level.

B.1.3 Regressing treatment response with treatment cell and other co-

variates

We regress the treatment response with treatment cell and all of our job covariates (except tier 2

category, which had 88 unique values and is a more granular version of tier 1 category). (Note:

to maintain full rank, each categorical covariate is encoded such that one of the levels is missing,

except for treatment cell, and there is no intercept. As a result, the treatment cell coefficients cannot

be interpreted as treatment means – they are the treatment means conditional on a specific value

of each of the categorical covariates and of 0 for the continuous variables). Further note that for

simplicity, we only include one set of interaction terms: treatment cell vs. the number of previous

treatment responses. Finally, note that the displayed standard errors are cluster-robust standard

errors where each client is a cluster, to take into account that ratings given by the same client are

correlated. We learn several things from this regression, displayed in Table B.2:

� There is some heterogeneity in ratings across the job covariates, but on the order of .1 points

on the average rating. This heterogeneity is dwarfed by the differences between the treatment

cells, especially the numeric vs. non-numeric treatments. This relative lack of heterogeneity

further supports that the differences between the mean treatment responses are not due to

randomness caused by some types of jobs being more present in some treatment groups than

others.

� We can directly measure the effect of the number of previous jobs during that testing period

a given client has submitted, i.e., estimate the inflation that will result over time as clients

submit additional jobs.

From the table below, each additional job a client has submitted raises the treatment response

for the Expectations and the Averages treatments, on the order of .008 to .014 points per

previous response. At this rate, these coefficients suggest that only after giving 100 ratings

172 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

would a client inflate ratings by an average of between .8 and 1.4 points. The Numeric

treatment cell does not further inflate substantially.

Dep. Variable: treatment-response R-squared: 0.128
Model: OLS Adj. R-squared: 0.128
Method: Least Squares Log-Likelihood: -1.6001e+05
No. Observations: 100438 AIC: 3.201e+05
Df Residuals: 100406 BIC: 3.204e+05
Df Model: 31

coef std err z P>|z| [0.025 0.975]

treatment cell[1] 3.0596 0.062 49.052 0.000 2.937 3.182
treatment cell[2] 3.3965 0.063 53.862 0.000 3.273 3.520
treatment cell[3] 3.4516 0.062 55.353 0.000 3.329 3.574
treatment cell[4] 3.4414 0.062 55.796 0.000 3.321 3.562
treatment cell[5] 3.1887 0.062 51.379 0.000 3.067 3.310
treatment cell[6] 4.3745 0.062 70.044 0.000 4.252 4.497
value group[T.lv] 0.1031 0.034 2.998 0.003 0.036 0.170
value group[T.mv] 0.0206 0.034 0.601 0.548 -0.047 0.088
value group[T.vlv] 0.2920 0.032 9.061 0.000 0.229 0.355
category group[T.Admin Support] -0.0591 0.046 -1.281 0.200 -0.150 0.031
category group[T.Customer Service] -0.1070 0.081 -1.320 0.187 -0.266 0.052
category group[T.Data Science & Analytics] 0.1177 0.050 2.354 0.019 0.020 0.216
category group[T.Design & Creative] 0.1077 0.042 2.581 0.010 0.026 0.189
category group[T.Engineering & Architecture] 0.1235 0.058 2.122 0.034 0.009 0.238
category group[T.IT & Networking] 0.1277 0.049 2.595 0.009 0.031 0.224
category group[T.Legal] 0.0643 0.061 1.047 0.295 -0.056 0.185
category group[T.Sales & Marketing] -0.0869 0.045 -1.920 0.055 -0.176 0.002
category group[T.Translation] 0.0405 0.060 0.676 0.499 -0.077 0.158
category group[T.Web, Mobile & Software Dev] 0.0940 0.042 2.256 0.024 0.012 0.176
category group[T.Writing] -0.1158 0.044 -2.638 0.008 -0.202 -0.030
expertise tier[T.Expert/Expensive] 0.1465 0.020 7.276 0.000 0.107 0.186
expertise tier[T.Intermediate] 0.0582 0.018 3.306 0.001 0.024 0.093
hr charge 1.376e-05 2.16e-06 6.376 0.000 9.53e-06 1.8e-05
fp charge 3.64e-05 6.73e-06 5.409 0.000 2.32e-05 4.96e-05
log(1 +client prev spend) -0.0069 0.006 -1.156 0.248 -0.018 0.005
log(1 +num prev asg) -0.0177 0.010 -1.769 0.077 -0.037 0.002
treatment cell[1]:# prev. treatment resps. by client 0.0080 0.004 2.042 0.041 0.000 0.016
treatment cell[2]:# prev. treatment resps. by client -0.0043 0.006 -0.675 0.500 -0.017 0.008
treatment cell[3]:# prev. treatment resps. by client 0.0085 0.003 2.850 0.004 0.003 0.014
treatment cell[4]:# prev. treatment resps. by client 0.0141 0.003 5.468 0.000 0.009 0.019
treatment cell[5]:# prev. treatment resps. by client 0.0024 0.005 0.485 0.628 -0.007 0.012
treatment cell[6]:# prev. treatment resps. by client 0.0010 0.004 0.246 0.806 -0.007 0.009

Omnibus: 11064.189 Durbin-Watson: 1.911
Prob(Omnibus): 0.000 Jarque-Bera (JB): 15421.891
Skew: -0.876 Prob(JB): 0.00
Kurtosis: 3.785 Cond. No. 9.60e+04

Table B.2: OLS Regression Results with covariate for previous number of treatment responses

B.1.4 More on inflation over time

The interpretations above suffer from selection bias: the set of clients who submit 10 jobs in the

test period are a different cohort than those who submit fewer. This effect is partially captured by

the term containing the previous number of client assignments. To address this issue, we repeat

the regression in Table B.2, limiting the analysis to those clients who have more than ten treatment

responses during the test period (all of which have the job covariates). The table is ommitted; the

coefficients for inflation over time are largely the same.

To further help visualize (the relative lack of) inflation over the number of submitted ratings,

Figure B.2 shows the mean ratings for each treatment cell by the number of previous treatment

responses given during the test period. As the plot has no covariate data, we use the first ten

responses for all 2145 clients who submitted at least 10 ratings during the test period. Clients are

not substantially more likely to give more positive ratings on their 10th rating during the test than

B.1. FURTHER ANALYSIS OF THE LABOR MARKET TEST 173

they give on their first rating.

0 2 4 6 8 10
Previous number of treatment responses by client

3.5

4.0

4.5
M

ea
n

ra
ti

n
g

Expectations

Adjectives

Average

Average, not affect score

Average, randomized

Numeric

Figure B.2: Mean ratings for each treatment cell by the number of previous treatment responses
given during the test period. Error bands are bootstrapped 95% confidence intervals.

B.1.5 Analysis of cell with randomized order of answer choices

The Average, Randomized contained the same question and answer choices as the Average condition,

but the choices were presented in a random order. If the raters read all the answer choices and pick

the most applicable one, then this condition would have returned a rating distribution identical to

that of the Average condition. However, it does not. Furthermore, the location of the chosen choice

would be distributed uniformly, i.e., the rater should pick the choice presented first as much as she

picks other choices. We find this not to be the case: the first answer choice presented to the rater

is picked 6806/26978 = 25.2% of the time. The second through sixth answer choices are picked

17.3%, 14.7%, 14.3%, 13.9%, and 14.5% of the time each, respectively.

This phenomenon suggests that (a) a small percentage (up to 10−13%) of raters do not read the

answer choices at all and simply select the first answer choice, and (b) many raters start reading from

the first presented choice and select the first one that approximately describes their experience. Our

test design cannot disambiguate between these (or other plausible) explanations. Nevertheless, this

effect is second-order relative to the overall finding that more descriptive scales are substantially more

informative than numeric scales, and the Average, Randomized treatment results are comparable to

those of other verbal scales.

B.1.6 Design approach using labor market data

Table B.3 and Figures B.3 and B.5 contain supplementary information regarding our application of

the design approach to the labor market data, as described in the main text.

174 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0
P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(a) Expectations

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(b) Adjectives

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(c) Average, not affect score

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(d) Average, randomized

Figure B.3: Joint distributions of freelancer quality vs. ratings in the other treatment cells. Low,
Medium, and High quality sellers refer to those with other cell average ratings in [0, 2), [2.5, 3.5) and
[4.5, 5], respectively.

B.2 Amazon Mechanical Turk synthetic experiment

In this section, we deploy an experiment on Amazon Mechanical Turk (“MTurk”) to repeat and ana-

lyze our design approach, in a synthetic setting where we have expert (external) quality information

on items. We note that this section is not a replication of the behavioral components of our results,

as the MTurk and online labor market settings are too different to meaningfully compare. Further-

more, one should be aware of limitations of using MTurk convenience samples in research (Landers

and Behrend, 2015); such limitations mean that there will be behavioral biases that differ from those

on other platforms. For these reasons, this section should be seen as a synthetic, example application

of our overall comparison and design methodology to other domains, and in particular will show

how our methods are useful not just to counter rating inflation but also other types of biases. This

appendix section is organized as follows. In B.2.1 we describe the task, and in B.2.2 we repeat our

analysis from the main text, including: showing the resulting marginal and joint distributions of

ratings and quality, and testing designs on new, unseen data.

B.2. AMAZON MECHANICAL TURK SYNTHETIC EXPERIMENT 175

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(a) Expectations

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(b) Adjectives

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(c) Average

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(d) Average, not affect score

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(e) Average, randomized

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
ili
ty

at
le
as
t
as

h
ig
h

Low quality

Medium quality

High quality

(f) Numeric

Figure B.4: Joint distributions, where Low, Medium, and High quality sellers refer to those with
other cell average ratings in [0, 2), [2, 4) and [4, 5], respectively.

B.2.1 Experiment description

Task Information

We asked subjects to rate the English proficiency of 10 paragraphs which are modified TOEFL

(Test of English as a Foreign Language) essays with known scores as determined by experts and

reported in a TOEFL study guide (Educational Testing Service, 2005); these are our true quality

types for each essay. Expert scores range from 1 through 5, with two paragraphs with each score.

Essays are shortened to a single paragraph of just a few sentences, and the top rated paragraphs are

improved and the worst ones are made worse; this is largely to ensure the quality could be sufficiently

distinguished between paragraphs despite having shortened them. In other words, for each topic, we

Response Score
Condition 0 1 2 3 4 5

Expectations 1.22 1.22 2.28 3.74 4.38 5.00
Adjectives 1.47 1.55 1.63 3.22 4.97 5.00
Average 1.80 1.84 1.88 2.53 3.83 5.00
Average, not affect score 0.89 1.57 1.59 3.32 4.04 5.00
Average, randomized 0.72 2.41 2.63 4.18 4.30 5.00
Numeric 0.50 1.20 1.98 2.88 3.45 5.00

Table B.3: Optimal scores φ for each treatment, where the score of the top position is normalized
to 5.

176 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

0 100 200 300 400 500

Time

0.2

0.3

0.4

0.5

0.6

E
rr
or

Treatment

Expectations

Average

Adjectives

Average, not affect score

Average, randomized

Numeric

(a) With optimal φ and probability of exit of 0.01.

0 100 200 300 400 500 600 700 800

Time

10−3

10−2

10−1

100

E
rr
or

Scoring Rule

Optimal

Worst

Equally Spaced

(b) Average treatment with different scoring rules

0 100 200 300 400 500 600 700 800

Time

10−3

10−2

10−1

E
rr
or

Scoring Rule

Optimal

Worst

Equally Spaced

(c) Adjectives treatment with different scoring rules

0 100 200 300 400 500 600 700 800

Time

10−2

10−1

E
rr
or

Scoring Rule

Optimal

Worst

Equally Spaced

(d) Numeric treatment with different scoring rules

Figure B.5: Simulated performance over time with various other configurations. The “Worst” scoring
rule corresponds to the rule φ with the smallest learning rate found for each treatment.

improved the language of the best rated paragraph and further degraded the language of the worst

one. In principle, our editing of these paragraphs may remove the validity of the expert ratings.

However, the estimated R(θ, y|Y) indicates that this does not substantially occur, suggesting our

editing of the paragraphs preserved the quality ordering of the paragraphs per the expert ratings.

Subjects were given one of five possible verbal scales, where the scales were designed using a list

of adjectives, {Abysmal, Awful, Bad, Poor, Mediocre, Fair, Good, Great, Excellent, Phenomenal},
compiled by Hicks et al. (2000). Each scale had five options. The scales are:

� Every Other: Awful, Poor, Fair, Great, Phenomenal

� Close to Every Other: Abysmal, Poor, Mediocre, Good, Phenomenal

� Extremes: Abysmal, Awful, Bad, Excellent, Phenomenal

� Negative-skewed: Abysmal, Awful, Bad, Poor, Mediocre

� Positive-skewed: Fair, Good, Great, Excellent, Phenomenal

B.2. AMAZON MECHANICAL TURK SYNTHETIC EXPERIMENT 177

0 1 2 3 4 5

Treatment response

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

at
le

as
t

as
hi

gh

Close to Every Other
Quality: 5 Quality: 4 Quality: 3 Quality: 2 Quality: 1

0 1 2 3 4 5

Treatment response

Extremes

0 1 2 3 4 5

Treatment response

Most Deflated

0 1 2 3 4 5

Treatment response

Most Inflated

0 1 2 3 4 5

Treatment response

Every Other

Figure B.6: Joint distributions of rating and expert score on the MTurk training set, by treatment
condition.

We note that it is not a priori clear which of these scales will perform well in this setting, or

what the optimal scoring mapping should be.

Raters (i.e., mTurk workers) were shown each of the ten paragraphs. The instructions were:

“Please rate on English proficiency (grammar, spelling, sentence structure) and coherence of the

argument, but not on whether you agree with the substance of the text.” The specific question

then asked was: “How does the following rate on English proficiency and argument coherence?”

One paragraph was shown per page; returning to modify a previous answer was not allowed; and

paragraphs were presented in a random order. Each rater was shown one of the scales picked at

random, and the same scale was used for all paragraphs for that rater. There were approximately

500 raters overall across the 5 treatment cells, with between 97 and 104 raters in each cell. For each

cell, we divide the raters (randomly) into train (75%) and test (25%). We design optimal scoring

rules using the training data, and then test performance on the test data.

Rater logistics

We did not exclude any data, and all raters were paid $1.50. Instructions advised raters to spend

no more than a minute per question, though this was not enforced. The median rater spent 325

seconds, corresponding to a median wage of $16.61/hr. About 80% of raters spent 8 minutes or less.

B.2.2 Results

We now repeat the design and test procedure from the main text, for this setting. All plots, figures,

and scoring rules are generated exactly as in the main text, with the following exceptions: (1)

we have true expert scores for the paragraph qualities and so do not use the procedure where we

178 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

Learning rates
Condition Equally spaced φ Optimal φ

Every Other 0.058 0.069
Extremes 0.077 0.079
Negative-skewed 0.051 0.059
Positive-skewed 0.034 0.043
Close to Every Other 0.043 0.044

Table B.4: Large deviation learning rates for each treatment in the Mturk experiment, calculated
using Equation (3.4) and the joint distributions generated using the training data plotted in Fig-
ure B.6. Optimal for each treatment corresponds to the highest learning rate among many random
score functions tested.

0 25 50 75 100 125 150 175 200

Time

10−3

10−2

10−1

100

E
rr
or

Treatment

Close to Every Other

Extremes

Negative-skewed

Positive-skewed

Every Other

(a) Training data

0 25 50 75 100 125 150 175 200

Time

10−2

10−1

100

E
rr
or

Treatment

Close to Every Other

Extremes

Negative-skewed

Positive-skewed

Every Other

(b) Test data

Figure B.7: Simulated performance of each rating scale with Equally Spaced scores.

B.3. PROOFS 179

estimate such qualities from the other treatment cells, and (2) we split the rater responses into test

and training sets. We show the joint distributions R(·|Y) and optimal scores calculated from the

training set, and then we evaluate performance on simulations using the test set.

Figure B.6 shows the joint distributions of rating and expert score on the MTurk training set, for

each treatment condition.Table B.4 shows the training set learning rates for each treatment using

equally spaced scores, as well as the best performing scores, respectively.

Finally, we simulate the performance of the designs (generated using the training data), following

the same simulation technique as outlined in the main text. We also evaluate performance on the test

data, in order to demonstrate how a platform would use our design approach. Figure B.7 shows the

resulting errors over time with Equally Spaced scores. Errors with optimal scores are qualitatively

similar.

B.3 Proofs

Lemma B.3.1.

lim
k→∞

−1

k
log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)] = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)}

where I(a|`) = supz{za− Λ(z|θ)}, Λ(z|θ) is the log moment generating function of a single sample

from x(θ1), and g(θ) is the sampling rate.

Proof. limk→∞− 1
k log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)]

= lim
k→∞

−1

k
log

[∫

a∈R
µ((xk(θ1) = a|θ1)µ(xk(θ2) ≥ a|θ2)da

]
(B.1)

= lim
k→∞

−1

k
log

[∫

a∈R
e−kg(θ1)I(a|θ1)e−kg(θ2)I(a|θ2)da

]
(B.2)

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Laplace principle (B.3)

Where (B.2) is a basic result from large deviations, and kg(θi) is the number of samples item of

quality θi has received. �

This lemma also appears in Glynn and Juneja (2004), which uses the Gartner-Ellis Theorem in

the proof. Our proof is conceptually similar but instead uses Laplace’s principle.

We can now establish the rate function for Pk(θ1, θ2).

Recall Pk(θ1, θ2) = µk(xk(θ1) > xk(θ2)|θ1, θ2)− µk(xk(θ1) < xk(θ2)|θ1, θ2). Then, we have

180 APPENDIX B. DESIGNING INFORMATIVE RATING SYSTEMS

Lemma B.3.2. Given θ1, θ2, let P k(θ1, θ2) = 1− Pk(θ1, θ2). Then:

− lim
k→∞

1

k
logP k(θ1, θ2) = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} , (B.4)

where I(a|θ) = supz{za − Λ(z|θ)}, and Λ(z|θ) is the log moment generating function of a single

rating given to seller of type θ:

Λ(z|θ) = log
∑

y∈Y
ρ(θ, y|Y) exp(zφ(y)).

Proof. Follows directly from Lemma B.3.1.

− lim
k→∞

1

k
logP k(θ1, θ2|β)

= lim
k→∞

−1

k
log [1 + µk(xk(θ1)− xk(θ2) < 0|θ1, θ2)− µk(xk(θ1)− xk(θ2) > 0|θ1, θ2)]

= lim
k→∞

−1

k
log [2µk(xk(θ1)− xk(θ2) < 0|θ1, θ2) + µk(xk(θ1)− xk(θ2) = 0|θ1, θ2)]

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Lemma B.3.1

�

Now we show that this rate function transfers to a rate function for Wk.

Proof of Theorem 1

r , − lim
k→∞

1

k
log(1−Wk) = min

0≤i<M
inf
a∈R
{g(θi+1)I(a|θi+1) + g(θi)I(a|θi)} (B.5)

where I(a|θ) = supz{za − Λ(z|θ)}, and Λ(z|θ) = log
∑
y∈Y ρ(θ, y|Y) exp(zφ(y)) is the log moment

generating function of a single rating given to seller of type θ.

Proof.

− lim
k→∞

1

k
log(1−Wk) = − lim

k→∞

1

k
log

(
1− 2

M(M − 1)

∑

θ1>θ2∈Θ

Pk(θ1, θ2)

)
(B.6)

= − lim
k→∞

1

k
log

2

M(M − 1)

∑

0≤i<j≤M

P k(θj , θi) (B.7)

= − max
0≤i<j≤M

(
lim
k→∞

1

k
log
(
P k(θj , θi)

))
= min

0≤i<j≤M

(
− lim
k→∞

1

k

[
log
(
P k(θj , θi)

)])

(B.8)

= min
0≤i<j≤M

inf
a∈R
{g(θj)I(a|θj) + g(θi)I(a|θi)} (B.9)

= min
0≤i<M

inf
a∈R
{g(θi+1)I(a|θi+1) + g(θi)I(a|θi)} (B.10)

B.3. PROOFS 181

Where the last line follows from adjacent θi, θi+1 dominating the rate due to properties of R.

Line (B.8) follows from: ∀aεi ≥ 0, lim supε→0

[
ε log

(∑N
i a

ε
i

)]
= maxNi lim supε→0ε log(aεi). See,

e.g., Lemma 1.2.15 in Dembo and Zeitouni (2010) for a proof of this property.

�

Appendix C

Designing Optimal Binary Rating

Systems

C.1 Mechanical Turk experiment, simulations, and results

In this section, we expand upon the results discussed in Section 4.5. We design and run an experi-

ment that a real platform may run to design a rating system. We follow the general framework in

Section 4.4. We first run an experiment to estimate a ψ(θ, y), the probability at which each item

with quality θ receives a positive answer under different questions y. Then, we design H(y), using

our optimal β for various settings (different objectives w and matching rates g). Then, we simulate

several markets (using the various matching rates g) and measure the performance of the different

rating system designs H, as measured by various objective functions (4.2).

C.1.1 Experiment description

We now describe our Mechanical Turk experiment. We ask subjects to rate the English proficiency

of ten paragraphs. These paragraphs are modified TOEFL (Test of English as a Foreign Language)

essays with known scores as determined by experts (Educational Testing Service, 2005). Subjects

were given six answer choices, drawn randomly from the following list: Abysmal, Awful, Bad, Poor,

Mediocre, Fair, Good, Great, Excellent, Phenomenal, following the recommendation of Hicks et al.

(2000). Poor and Good are always chosen, and the other four are sampled uniformly at random

for each worker. One paragraph is shown per page; returning to modify a previous answer is not

allowed; and paragraphs are presented in a random order. This data is used to calibrate a model

of ψ for optimization, i.e. to simulate a system with a set of questions Y, where each question y

corresponds to a adjective, “Would you characterize the performance of this item as [adjective] or

182

C.1. MECHANICAL TURK EXPERIMENT, SIMULATIONS, AND RESULTS 183

0 20 40 60
Time (s)

Feedback
Question 10
Question 9
Question 8
Question 7
Question 6
Question 5
Question 4
Question 3
Question 2
Question 1
Instructions

Begin

P
ag
e

(a) Time spent per page.

0 10 20 30 40 50 60
Time (s)

10

9

8

7

6

5

4

3

2

1

P
ar
ag
ra
p
h

(b) Time spent per paragraph.

0 200 400 600 800 1000 1200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(c) Distribution (CDF) of total time
spent.

Figure C.1: Additional information for MTurk experiment

better?”.1

Different experiment trials are described below. Pilots were primarily used to garner feedback

regarding the experiment from workers (fair pay, time needed to complete, website/UI comments,

etc). All trials yield qualitatively similar results in terms of both paragraph ratings and feedback

rating distributions for various scales.

Pilot 1 30 workers. Similar conditions as final experiment (6 words sampled for paragraph ratings,

all uniformly at random, 5 point scale feedback rating), with identical question phrasing, “How

does the following rate on English proficiency and argument coherence?”.

Pilot 2 30 workers. 7 words sampled for paragraph ratings, 6 point scale feedback rating, with the

following question phrasing: “How does the following person rate on English proficiency and

argument coherence?”.

Experiment 200 workers. 6 words sampled for paragraph ratings, with 2 fixed as described above,

5 point scale feedback rating. Question phrasing, “How does the following rate on English

proficiency and argument coherence?”.

We use paragraphs modified from a set published by the Educational Testing Service (Educational

Testing Service, 2005). There are 10 paragraphs, 5 each on 2 different topics. For each topic, the

paragraphs have 5 distinct expert scores. Paragraphs are shortened to just a few sentences, and

the top rated paragraphs are improved and the worst ones are made worse, preserving the ranking

according to the expert scores.

Figure C.1a shows time spent on each page of the experiment, Figure C.1b shows the time spent

per paragraph, and Figure C.1c shows the cumulative density function for time spent by workers.

The paragraphs are presented to workers in a random order. No workers are excluded in our data

and all workers were paid $1.00, including the ones that spent 2-3 seconds per page. 7/60 workers

1The data from the experiment is also used for a separate paper, Garg and Johari (2019b). In that work, we
analyze the full multi-option question directly, but the main focus is reporting the results of a separate, live trial on
a large online labor platform.

184 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

A
wf
ul

Ba
d

Po
or

M
ed
io
cr
e

Fa
ir

G
oo
d

G
re
at

Ex
ce
lle
nt

Ph
en
om
en
al

Question y

0.0

0.2

0.4

0.6

0.8

1.0

ψ̂
(θ
,y
)

0

1

2

3

4

5

6

7

8

9

Figure C.2: Paragraph rating distribution – for paragraph θ and rating word y, the empirical ψ̂(θ, y)
is shown. Colors encode the true quality as rated by experts (light blue is best quality, dark blue is
worst).

in the pilots received a bonus of $0.20 for providing feedback. The instructions advised workers to

spend no more than a minute per question, though this was not enforced.

The instructions for the main experiment were as follows: “Please rate on English proficiency

(grammar, spelling, sentence structure) and coherence of the argument, but not on whether you

agree with the substance of the text.” No additional context was provided.

C.1.2 Calculating optimal β and H

Figure C.2 shows the empirical ψ̂(θ, y) as measured through our experiment. The colors encode the

true quality as rated by experts (light blue is best quality, dark blue is worst); recall there are 10

paragraphs with 5 distinct expert ratings (paragraphs 0 and 5 are rated the best, paragraphs 4 and

9 are rated the worst).

With the β calculated and visualized using the methods in Section 4.3, we now find the optimal H

for various settings using the methods in Section 4.4. We view our set of paragraphs as representative

items Θ from a larger universe of paragraphs. In particular, we view our worst quality paragraphs

as in the 10th percentile of paragraphs, and our best items as in the 90th percentile. In other

words, from the empirical ψ̂, we carry out the methods in Section 4.4 using a ψ s.t. ψ(.1, y) =

(ψ̂(4, y) + ψ̂(9, y)/2 (and similarly for ψ(.3, y), ψ(.5, y), ψ(.7, y), ψ(.9, y), where e.g. ψ̂(4, y) is the

empirical rate at which paragraph 4 received a positive rating on question y.

Then, we solve the optimization problem for H stated in Section 4.4. From the above discussion,

we want to find an H such that the worst rated paragraphs in our experiment have a probability of

receiving a positive rating that is approximately β(.1).

Figure C.3 shows the optimal H calculated for various platform settings. These distributions

illustrate how often certain binary questions should be asked as it depends on the matching rates

and platform objective. For example, as Figure C.3a shows, when there is uniform matching and

C.1. MECHANICAL TURK EXPERIMENT, SIMULATIONS, AND RESULTS 185

A
wf
ul

Ba
d

Po
or

M
ed
io
cr
e

Fa
ir

G
oo
d

G
re
at

Ex
ce
lle
nt

Ph
en
om
en
al

Question y

0.00

0.25

0.50

0.75

1.00

H
(y
)

H for Kendall’s τ

H for top items

H for bottom items

H for extreme items

Naive H

(a) Uniform search, g(θ) = 1.

A
wf
ul

Ba
d

Po
or

M
ed
io
cr
e

Fa
ir

G
oo
d

G
re
at

Ex
ce
lle
nt

Ph
en
om
en
al

Question y

0.00

0.25

0.50

0.75

1.00

H
(y
)

H for Kendall’s τ

H for top items

H for bottom items

H for extreme items

Naive H

(b) Linearly increasing search, g(θ) = 1+10θ
11

.

Figure C.3: Optimal H(y) varying by w(θ1, θ2) using Mechanical Turk data

the platform cares about the entire ranking (i.e. has Kendall’s τ or Spearman’s ρ objective), it

should ask most buyers to answer the question, “Would you rate this item as having ‘Fair’ quality

or better?”.

Several qualitative insights can be drawn from the optimal H. Most importantly, note that the

optimal designs vary significantly with the platform objective and matching rates. In other words,

given the same empirical data ψ̂, the platform’s design changes substantially based on its goals and

how skewed matches are on the platform. Further, note that the differences in H follow from the

differences in β that are illustrated in Figure 4.1: when the platform wants to accurately rank the

best items, the questions that distinguish amongst the best (e.g., “Would you rate this item as

having ‘Good’ quality?”) are drawn more often.

C.1.3 Simulation description

Using the above data and subsequent designs, we simulate markets with a binary rating system as

described in Section 4.3.1. Our simulations have the following characteristics.

� 500 items. Items have i.i.d. quality in [0, 1]. For item with quality θ, we model buyer rating

data using the ψ collected from the experiment as follows. In particular, we presume the items

are convex combinations of the representative items in our experiment – items with quality

θ ∈ [.1, .3] are assumed to have rating probabilities ψ(θ, y) = αψ(.1, y) + (1 − α)ψ(.3, y),

where α = (θ − .1)/.2. Similarly for θ in other intervals. This process yields the β̃ shown in

Figure 4.2b.

� In some simulations, all items enter the market at time k = 0 and do not leave. In the others,

with entry and exit, each item independently leaves the market with probability .02 at the end

of each time period, and a new item with quality drawn i.i.d. from [0, 1] enters.

186 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

� There are 100 buyers, each of which matches to an item independently. In other words,

matching is independent across items, and items can match more than once per time period.

� Matching is random with probability as a function of an item’s estimated rank θ̂ according to

score, rather than actual rank. In other words, the optimal systems were designed assuming

item θ would match at rate g(θ); instead it matches according to g(θ̂), where θ̂ is the item’s

rank according to score. We use both g = 1 and linear search, g(θ̂) = 1+10θ̂
11 .

� Y is the set of 9 adjectives from our MTurk experiments.

� We test several possible H: naive with H(y) = 1
|Y| , and then the various optimal H calculated

for the different sections, illustrated in Figure C.3.

Simulation results

Figure C.4 contains plots from a simulated system that has binary ratings. Figures C.4a, C.4b are

with uniform search (g = 1), Figures C.4c and C.4d plot the objective prioritizing the worst items,

and Figures C.4e and C.4f are with linearly increasing search. For each setting, we include both

plots with and without birth/death.

Together, the results suggest that the asymptotic and rate-wise optimality of our calculated

β hold even under deviations of the model, and that the real-world design approach outlined in

Section 4.4 would provide substantial information benefits to platforms.

Several specific qualitative insights can be drawn from the figures, alongside those discussed in

the main text.

1. From all the plots with uniform search, the H designed using our methods for the given setting

outperforms other H designs, as expected, and the optimal β (for the given setting) significantly

outperforms other designs both asymptotically and rate-wise.

2. Qualitatively, again with uniform search, heterogeneous item age also does not affect the results.

In fact, it seems as if the optimal β and best possible H (given the data) as calculated from

our methods outperforms other designs both asymptotically and rate-wise. Note that this is true

even though items entering and leaving the market means that the system may not enter the

asymptotics under which our theoretical results hold.

3. Figures C.4c and C.4d show the same system parameters as Figures C.4a, C.4b, i.e. uniform

search. However, while C.4a, C.4b show Kendall’s τ correlation over time, C.4c and C.4d show

the objective prioritizing bottom items (w = (1−θ1)(1−θ2)(θ1−θ2)). Note that the β calculated

for the actual objective outperforms that calculated for Kendall’s τ , including asymptotically.

Similarly, complementing the fact that H design changes significantly with the weight function,

these plots show the value of designing while taking into account one’s true objective value – the

C.1. MECHANICAL TURK EXPERIMENT, SIMULATIONS, AND RESULTS 187

different designs perform differently. Mis-specifying one’s objective (e.g. designing to differentiate

the best items when one truly cares about the worst items) leads to a large gap in performance

(e.g. see the gap between the dark green and red lines in C.4c and C.4d).

Note that comparing the performance of β for the misspecified objective and H for the true

objective is not a fair comparison: the former differentiates between all items (though potentially

not in a rate-optimal way), while H is constrained by reality, i.e. ψ and Y.

4. Now, consider Figures C.4e and C.4f, which plot the system with linearly increasing search. Note

that, contrary to expectation, the optimal β for uniform search outperforms the β for the actual

system simulated, with linear search! This pattern is especially true for small time k and with

item birth/death.

This inversion can be explained as follows. Uniformization occurs with heterogeneous age and

matching according to observed quality: new items of high type are likely to be mis-ranked lower,

while new items of low type are more likely to be mis-ranked higher. (We note that this may not

matter in practice, where the search function itself is fit through data, which already captures

this effect.) These errors are prominent at low time k and with item birth/death, i.e., in the

latter our system never reaches the asymptotics at which the linear β is the optimal design.

This pattern can be seen more clearly by comparing the two β curves in Figures C.4e, without

item birth/death. At small k, when errors are common and so search is more effectively uniform,

the β for uniform matching performs the best. However, as such errors subside over time, the

performance of the β for linear search catches up and eventually surpasses that of uniform optimal

β.

188 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

20 40 60 80

Time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

K
en
d
al
l’
s
τ
C
or
re
la
ti
on

Optimal β

β̃ from best H (for Kendall’s τ)

β̃ from Naive H

β̃ from H for top items objectives

β̃ from H for bottom item objectives

(a) Uniform matching, no birth/death

10 20 30 40 50

Time

0.4

0.5

0.6

0.7

0.8

K
en
d
al
l’
s
τ
C
or
re
la
ti
on

Optimal β

β̃ from best H (for Kendall’s τ)

β̃ from H for bottom item objectives

β̃ from Naive H

β̃ from H for top items objectives

(b) Uniform matching, 2% probability of death per
time

20 40 60 80

Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
ot
to
m

fo
cu
se
d
ob

j.
va
lu
e

Optimal β (for worst items objective)

β (for Kendall’s τ)

β̃ from Best H (for worst items objective)

β̃ from H for kendall’s τ

β̃ from H for top items objectives

β̃ from Naive H

(c) Uniform matching, no birth/death, worst items
weighted objective

20 40 60 80

Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
ot
to
m

fo
cu
se
d
ob

j.
va
lu
e

Optimal β (for worst items objective)

β (for Kendall’s τ)

β̃ from Best H (for worst items objective)

β̃ from H for kendall’s τ

β̃ from Naive H

β̃ from H for top items objectives

(d) Uniform matching, 2% birth/death, worst items
weighted objective

25 50 75 100 125 150 175

Time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

K
en
d
al
l’
s
τ
C
or
re
la
ti
on

Optimal β for linear g

Optimal β for uniform g

β̃ from H for linear g

β̃ from H for uniform g

β̃ from Naive H

(e) Linear matching, no birth/death

20 40 60 80

Time

0.4

0.5

0.6

0.7

0.8

K
en
d
al
l’
s
τ
C
or
re
la
ti
on

Optimal β for linear g

Optimal β for uniform g

β̃ from H for linear g

β̃ from H for uniform g

β̃ from Naive H

(f) Linear matching, 2% probability of death per time

Figure C.4: Simulations from data from Mechanical Turk experiment – Binary rating system

C.2. SUPPLEMENTARY THEORETICAL INFORMATION AND RESULTS 189

C.2 Supplementary theoretical information and results

We now give some additional detail and develop additional results. Section C.2.1 contains the formal

specification and update of our deterministic dynamical system. Section C.2.2 gives our algorithm,

Nested Bisection, is far more detailed pseudo-code. Section C.2.3 formalizes our earlier qualitative

discussion on how matching rates affects the function β. Section C.2.4 includes a convergence result

for functions βM as M increases. Finally, Section C.2.5 contains simple results on how one can learn

ψ(θ, y) through experiments, even if one does not have a reference set of items Θ with known quality

before one begins experiments.

C.2.1 Formal specification of system state update

Recall that µk(Θ, X) is the mass of items with true quality θ ∈ Θ ⊆ [0, 1] and a reputation score

x ∈ X ⊆ [0, 1] at time k. Let Ek = {θ : nk(θ) = nk−1(θ) + 1}. These are the items who receive an

additional rating at time k; for all θ ∈ Eck, nk(θ) = nk−1(θ). Our system is completely deterministic,

and evolves according to the distributions of the individual seller dynamics.

For each θ ∈ Ek, x, x′, define ω(θ, x, x′) as follows:

ω(θ, x, x′) = β(θ)I{nk(θ)x− nk−1(θ)x′ = 1}+ (1− β(θ))I{nk(θ)x− nk−1(θ)x′ = 0}.

Then ω gives the probability of transition from x′ to x when an item receives a rating. We then

have:

µk+1(Θ, X) =

∫

Ek

∫ 1

x′=0

∫

x∈X
ω(θ, x, x′)dxµk(dx′, dθ) +

∫

Eck

∫

x∈X
µk(dx, dθ).

It is straightforward but tedious to check that the preceding dynamics are well defined, given our

primitives.

C.2.2 Detailed algorithm

Here, we present the Nested Bisection algorithm, which is described at a high level and summarized

in pseudo-code in the main text, in more detail.

190 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

ALGORITHM 3: Nested Bisection given in more detail

Data: Set size M , grid width δ, match function g /* Assume δ << mini ti − ti−1 */

Result: βM levels {t0 . . . tM−1}
1 Function main (M , δ, g)
2 t0 = 0, tM−1 = 1
3 ` = 1− 1

M−1
, u = 1− δ

4 while u− ` > δ/2 do
5 jM−2 = r+`

2

6 ratelast = −gM−2 log(tM−2)
7 {j1 . . . jM−3} = CalculateOtherLevels(jM−2, ratelast, g)
8 ratefirst = −g1 log(1− t1)
9 if ratefirst < ratelast then ` = jM−2

10 else u = jM−2

11 {t1 . . . tM−2} = CalculateOtherLevels(u, g)
12 tM−2 = u
13 return {ti}
14 Function PairwiseRate (tm−1, tm, gm, gm−1)

15 return −(gm−1 + gm) log

[
(1− tm−1)

gm−1
gm−1+gm (1− tm)

gm
gm−1+gm + t

gm−1
gm−1+gm

m−1 t
gm

gm−1+gm
m

]
16 Function CalculateOtherLevels (jM−2, ratetarget, g)

/* Given target rate from current guess jM−2, sequentially fix other levels. */

17 foreach m ∈M − 3 . . . 1 do
18 jm = BisectNextLevel(jm+1, ratetarget, gm, gm+1)
19 return {j1 . . . jM−3}
20 Function BisectNextLevel (jm, ratetarget, gm−1, gm)
21 ` = 0, r = jm − δ
22 while r − ` > δ/2 do
23 jm−1 = r+`

2

24 ratem = PairwiseRate(jm−1, jm, gm−1, gm)
25 if ratem ≤ ratetarget then r = jm−1

26 else ` = jm−1

27 return r

C.2. SUPPLEMENTARY THEORETICAL INFORMATION AND RESULTS 191

C.2.3 Formalization of effect of matching rates shifting

Matching concentrating at the top items moves mass of β(θ) away from high θ, and subsequently

mass of H(y) away from the questions that help distinguish the top items, as observed in Fig-

ures 4.1b and C.3b above. Informally, this occurs because when matching concentrates, top items

are accumulating many ratings more ratings comparatively, and so the amount of information needed

per rating is comparatively less. We formalize this intuition in Lemma C.2.1 below.

The lemma states that if matching rates shift such that there is an index k above which matching

rates increase and below which they decrease, then correspondingly the levels of β, (i.e. ti) become

closer together above k.

Lemma C.2.1. Suppose k, g, g̃ such that ∀j ∈ {k+1 . . .M−1}, gj ≥ g̃j, and ∀j ∈ {0 . . . k−1}, gj ≤
g̃j, and gk = g̃k. Then, t∗k ≥ t̃∗k.

Proof. This proof is similar to that of Lemma 4.3.1, except that with the matching function changing

the overall rate function can either increase, decrease, or stay the same. Suppose the overall rate

function decreased or stayed the same when the matching function changed from g̃ to g. Then

gM−2 > g̃M−2 and the target rate is no larger, and so t∗M−2 > t̃∗M−2. Then, t∗M−3 > t̃∗M−3 (a smaller

width is needed because the matching rates are higher and the rate is no larger, and the next value

also increased). This shifting continues until t∗k+1 > t̃∗k+1. Then, t∗k > t̃∗k.

Suppose instead that the overall rate function increased when the matching function changed

from g̃ to g. Then g1 < g̃1 and the target rate is larger, and so t∗1 > t̃∗1. Then, t∗2 > t̃∗2 (a larger

width is needed and the previous value also increased). This shifting continues until t∗k−1 > t̃∗k−1.

Then, t∗k > t̃∗k. �

C.2.4 Limit of β as M →∞
Let βwM denote the optimal β with M intervals for weight function w, with intervals {SwMi } =

{[swMi , swMi+1)} and levels twM . Let qwM (θ) = i/M when θ ∈ [swMi , swMi+1), i.e. the quantile of

interval item of type θ is in.

Then, we have the following convergence result for βM .

Theorem C.2.1. Let g be uniform. Suppose w such that qwM converges uniformly. Then, ∀C ∈
N,∃βw s.t. βwC2N+1 → βw uniformly as N →∞.

The proof is technical and is below. We leverage the fact that, for g uniform, the levels of β2M

can be analytically written as a function of the levels of βM . We believe (numerically observe)

that this theorem holds for the entire sequence as opposed to the each such subsequence, and for

general matching functions g. However, our proof technique does not carry over, and the proof

would leverage more global properties of the optimal βM .

192 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Furthermore, the condition on w is light. For example, it holds for Kendall’s τ , Spearman’s ρ,

and all other examples mentioned in this work.

This convergence result suggests that the choice of M when calculating a asymptotic and rate

optimal β is not consequential. As M increases, the limiting value of Wk increases to 1 (i.e. the

asymptotic value increases), but the optimal rate decreases to 0. As discussed above, with strictly

increasing and continuous β, the asymptotic value is 1 but the large deviations rate does not exist,

i.e. convergence is polynomial.

This result could potentially be strengthened as follows: first, show convergence on the entire

sequence as opposed to these exponential subsequences, as conjectured; second, show desirable

properties of the limiting function itself. It is conceivable but not necessarily true that the limiting

function is “better” than other strictly continuous increasing functions in some rate sense, even

though the comparison through large deviations rate is degenerate.

C.2.5 Learning ψ(θ, y) through experiments

Now, we show how a platform would run an experiment to decide to learn ψ(θ, y). In particular,

one potential issue is that the platform does not have any items with know quality that it can use

as representative items in its optimization. In this case, we show that it can use ratings within the

experiment itself to identify these representative items. The results essentially follow from the law

of large numbers.

We assume that |Θ| = L representative items i ∈ {1 . . . L} are in the experiment, and each are

matched N times. The experiment proceeds as follows: every time an item is matched, show the

buyer a random question from Y. For each word y ∈ Y, track the empirical ψ̂(i, y), the proportion

of times a positive response was given to question y. Alternatively, if Y is totally ordered (i.e. a

positive rating for a given y also implies positive ratings would be given to all “easier” y′), and

can be phrased as a multiple choice question, data collection can be faster: e.g., as we do in our

experiments: Y consists of a set of totally ordered adjectives that can describe the item; the rater is

asked to pick an adjective out of the set; this is interpreted as the item receiving a positive answer

to the questions induced by the chosen answer and all worse adjectives, and a negative answer to all

better adjectives.

First, suppose the platform approximately knows the quality θi of each item i, and θi are evenly

distributed in [0, 1]. Suppose the items are ordered by index, i.e. θ1 < θ2 < · · · < θL. Then let

ψ̂(θ, y) = ψ̂(i, y) when θ ∈ [θi−1, θi]. Call this procedure KnownTypeExperiment.

Lemma C.2.2. Suppose ψ(θ, y) is Lipschitz continuous in θ. With KnownTypeExperiment, ψ̂(i, y)→
ψ(θi, y)∀y uniformly as N →∞. As L→∞, ψ̂(θ, y)→ ψ(θ, y)∀θ uniformly.

Proof. The proof follows directly from the Strong Law of Large Numbers. As N →∞, ∀i, ψ̂(i, x)→
ψ(θi, x) uniformly. Now, let L→∞. ∀ε,∃L′ s.t. ∀L > L′, ∀θ,∃i s.t. |θ−θi| < ε. ψ(θ, x) is Lipschitz

C.3. PROOFS 193

in θ by assumption, and so ψ̂(θ, x)→ ψ(θ, x) uniformly. �

We now relax the assumption that the platform has an existing set of items with known qualities.

Suppose instead the platform has many items L of unknown quality who are expected to match N

times each over the experiment time period. For each item, the platform would again ask questions

from Y, drawn according to any distribution (with positive mass on each question). Then generate

ψ̂(θ, y) as follows: first, rank the items according to their ratings during the experiment itself.

Then, for each y, ψ̂(θ, y) is the empirical performance of the θth percentile item in the ranking, i.e.

ψ̂(θ, y) = ψ̂(θi, y) for θ ∈
[
i−1
L , iL

]
. Call this procedure UnknownTypeExperiment.

Lemma C.2.3. Suppose ψ(θ, y) is Lipschitz continuous in θ. With UnknownTypeExperiment,

ψ̂(θ, y)→ ψ(θ, y)∀y, θ uniformly as L,N →∞.

Proof. Fix L. Denote each item in the experiment as i ∈ {1 . . . L} (with true quality θi 6= θj),

and each item has N samples. Without loss of generality, assume the items are indexed according

to their rank on the average of their scores on the samples, defined as the percentage of positive

ratings received. i = 1 is then the worst item, and i = L is the best item according to scores in the

experiment.

For ψ(θ, x) increasing in θ, as N → ∞, Pr(θi > θj |i < j) → 0 almost surely by SLLN, and for

a fixed L, {θi} this convergence is uniform. Furthermore, by SLLN, ψ̂(i, x) → ψ(θi, x) as N → ∞.

Recall ψ̂(θ, x) = ψ̂(i, x) for θ ∈
[
i−1
L , iL

]
.

Now, let L → ∞. ∀ε,∃L′ s.t. ∀L > L′, ∀θ,∃i s.t. |θ − θi| < ε. ψ(θ, x) is Lipschitz in θ by

assumption, and so ψ̂(θ, x)→ ψ(θ, x) uniformly. �

C.3 Proofs

In this Appendix section, we prove our results.

Sections C.3.1-C.3.3 develop rate functions for Pk and Wk. While rates for Pk follow immediately

from large deviation results, the rate function forWk requires more effort as the quantity is an integral

over a continuum of (θ1, θ2), each of which has a rate corresponding to that of Pk(θ1, θ2).

Then in Section C.3.4 we prove Theorem 4.3.1 and Lemma 4.3.1.

Section C.3.5 then contains additional necessary lemmas required for the proof of the algorithm

and convergence result, Theorem C.2.1. The main difficulty for the former is showing a Lipschitz

constant in the resulting rate if a level ti is shifted, which requires lower and upper bounds for t1 and

tM−2, respectively. For the former, we need to relate the solutions of the sequence of optimization

problems used to find βM as M increases. It turns out that both properties follow by relating the

levels of βM to those of β2M−1.

These additional lemmas are used to prove the algorithm approximation bound (Theorem 4.3.2)

and the convergence result (Theorem C.2.1) in Section C.3.6 and C.3.7, respectively.

194 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Finally in Section C.3.8 we prove the comments we make in the main text about Kendall’s τ and

Spearman’s ρ rank correlations belonging in our class of objective functions, with asymptotic values

of Wk maximized when s is equispaced in [0, 1].

C.3.1 Rate functions for Pk(θ1, θ2)

Lemma C.3.1.

lim
k→∞

−1

k
log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)] = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)}

where I(a|`) = supz{za − Λ(z|θ)}, and Λ(z|θ) is the log moment generating function of a single

sample from x(θ1) and g(θ) is the sampling rate.

Proof. limk→∞− 1
k log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)]

= lim
k→∞

−1

k
log

[∫

a∈R
µ((xk(θ1) = a|θ1)µ(xk(θ2) ≥ a|θ2)da

]
(C.1)

= lim
k→∞

−1

k
log

[∫

a∈R
e−kg(θ1)I(a|θ1)e−kg(θ2)I(a|θ2)da

]
(C.2)

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Laplace principle (C.3)

�

Where (C.2) is a basic result from large deviations, where kg(θi) is the number of samples item

of quality θi has received.

Note that this lemma also appears in Glynn and Juneja (2004), which uses the Gartner-Ellis

Theorem in the proof. Our proof is conceptually similar but instead uses Laplace’s principle.

Recall that KL(a||b) = a log b
a + (1− a) log 1−b

1−a is the Kullback-Leibler (KL) divergence between

Bernoulli random variables with success probabilities a and b respectively. It is well known that for

a Bernoulli random variable with success probability t,

I(a|t) = KL(a||t)

Then, we have

Lemma C.3.2. Let θ1 > θ2 and I(a|θ) = KL(a||β(θ)). Further, Let P k(θ1, θ2) = 1 − Pk(θ1, θ2).

Then,

− lim
k→∞

1

k
logP k(θ1, θ2) = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} , (C.4)

C.3. PROOFS 195

Proof. Follows directly from Lemma C.3.1.

− lim
k→∞

1

k
logP k(θ1, θ2|β)

= lim
k→∞

−1

k
log [1 + µk(xk(θ1)− xk(θ2) < 0|θ1, θ2)− µk(xk(θ1)− xk(θ2) > 0|θ1, θ2)]

= lim
k→∞

−1

k
log [2µk(xk(θ1)− xk(θ2) < 0|θ1, θ2) + µk(xk(θ1)− xk(θ2) = 0|θ1, θ2)]

= lim
k→∞

−1

k
log [µk(xk(θ1)− xk(θ2) ≤ 0|θ1, θ2)]

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Lemma C.3.1

�

C.3.2 Laplace’s principle with sequence of rate functions

In order to derive a rate function for W k = (limkWk)−Wk, we need to be able to relate its rate to

that of P k(θ1, θ2). The following theorem, related to Laplace’s principle for large deviations allows

us to do so.

Theorem C.3.1. Suppose that X is compact with finite Lebesgue measure µ(X) <∞. Suppose that

ϕ(x) has an essential infimum ϕ on X, that ϕn(x) has an essential infimum ϕ
n

, that both ϕ and all

ϕn are nonnegative, and that ϕn → ϕ uniformly:

lim
n→∞

sup
x∈X
|ϕn(x)− ϕ(x)| = 0.

Then:

lim
n→∞

1

n
log

∫

X

e−nϕn(x)dx = −ϕ. (C.5)

Proof. First, we note that for all x and n, e−nϕn(x) ≤ e−nϕn . Therefore, letting (∗) denote the

LHS of (C.5), we have:

(∗) ≤ lim
n→∞

1

n
log

∫

X

e−nϕndx = −ϕ,

where the last limit follows from the fact that ϕn converges uniformly to ϕ, so that ϕ
n
→ ϕ.

Next, for ε > 0 let An(ε) = {x : ϕn(x) ≤ ϕ
n

+ ε} and let A(ε) = {x : ϕ(x) ≤ ϕ + ε}. It

follows (again by uniform convergence) that for all sufficiently large n, A(ε/2) ⊆ An(ε), so that

µ(A(ε/2)) ≤ µ(An(ε)) for all sufficiently large n. Further, µ(A(ε/2)) > 0, since ϕ is the essential

infimum.

Since: ∫

X

e−nϕn(x)dx ≥ µ(An(ε))e−n(ϕ
n

+ε),

196 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

it follows that:

(∗) ≥ −ϕ− ε+ lim
n→∞

1

n
logµ(An(ε)).

To complete the proof, observe that since µ(An(ε)) is bounded below by a positive constant for all

sufficiently large n, the last limit is zero. Therefore:

(∗) ≥ −ϕ− ε.

Since ε was arbitrary, this completes the proof. �

Remark C.3.1. Let X = [0, 1]× [0, 1], ϕn(θ1, θ2) = − 1
n logPn(θ1, θ2). Then, all the conditions for

Theorem C.3.1 are met.

C.3.3 Rate function for Wk

Our next lemma shows that we can obtain a nontrivial large deviations rate for Wk when β is a

step-wise increasing function.

Recall Wk =
∫
θ1>θ2

w(θ1, θ2)Pk(θ1, θ2|β)d(θ1, θ2).

Let P k(θ1, θ2) = 1− Pk(θ1, θ2).

Further, let W k = (limkWk)−Wk =
∫
θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2). (recall we assumed w

integrates to 1 without loss of generality).

Lemma C.3.3. Suppose β is piecewise constant with M levels {ti}. Let gi , infθ∈Si g(θ) = g(si)

Then,

− lim
k→∞

1

k
logW k = min

0≤i≤M−2
inf
a∈R
{gi+1I(a|ti+1) + giI(a|ti)} , r, (C.6)

where I(a|t) = KL(a||t) as defined in Lemma C.3.2.

Proof. When β is step-wise increasing with M levels {ti}, then

W k =
∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2)

as P k(θ1, θ2) = 0 when β(θ1) = β(θ2).

C.3. PROOFS 197

− limk→∞
1
k logW k

= − lim
k→∞

1

k
log

∫

θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (C.7)

= − lim
k→∞

1

k
log

∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (C.8)

= − max
0≤i<j<M

(
lim
k→∞

1

k

[
log

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)P k(θj , θi|β)d(θ1, θ2)

])
(C.9)

= − max
0≤i<j<M

sup
θ1∈Sj ,θ2∈Si

(
lim
k→∞

1

k

[
logw(θ1, θ2)P k(θj , θi|β)

])
(C.10)

= − max
0≤i<j<M

sup
θ1∈Sj ,θ2∈Si

(
lim
k→∞

1

k
logP k(θj , θi|β)

)
(C.11)

= min
0≤i<j<M

inf
θ1∈Sj ,θ2∈Si

(
− lim
k→∞

1

k
logP k(θj , θi|β)

)
(C.12)

= min
0≤i<j<M

inf
θ1∈Sj ,θ2∈Si

inf
a∈R
{g(θ1)I(a|tj) + g(θ2)I(a|ti)} (C.13)

= min
0≤i<j<M

inf
a∈R
{gjI(a|tj) + giI(a|ti)} (C.14)

= min
0≤i<M−1

inf
a∈R
{gi+1I(a|ti+1) + giI(a|ti)} (C.15)

The last line follows from adjacent ti, ti+1 dominating the rate due to monotonicity properties.

Line (C.10) follows from Theorem C.3.1.

Line (C.9) follows from: ∀aεi ≥ 0, lim supε→0

[
ε log

(∑N
i a

ε
i

)]
= maxNi lim supε→0ε log(aεi), which

is a finite case version (with fewer assumptions) of Theorem C.3.1. See, e.g., Lemma 1.2.15 in (Dembo

and Zeitouni, 2010) for a proof of this property.

�

Lemma C.3.4. β(θ) is piecewise constant ⇐⇒ ∃c(β) > 0 s.t. − limk→∞
1
k log(W k) = c(β).

Proof. =⇒ follows directly from Lemma C.3.3: infa∈R {gi+1I(a|ti+1) + giI(a|ti)} > 0 when

ti 6= ti+1, which holds when β is piece-wise constant with the appropriate number of levels.

⇐= Consider β that is not piece-wise constant. Recall that we further assume that β is non-

decreasing, and discontinuous only on a measure 0 set. Following algebra steps similar to those in

Lemma C.3.3, but for general β:

198 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

− lim
k→∞

1

k
logW k = − lim

k→∞

1

k
log

∫

θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (C.16)

= inf
θ1>θ2

(
− lim
k→∞

1

k
logP k(θj , θi|β)

)
(C.17)

= 0 (C.18)

Where the last line follows from β continuous at some θ1, and so limθ2→θ1 P k(θ1, θ2|β) = 1.

Intuitively, what goes wrong with continuous β is that P k(θ1, θ2|β) does not converge uniformly:

∀ε, k, ∃θ2 6= θ1 P k(θ1, θ2) > ε

i.e. close by items are very hard to distinguish from one another. Then, because the large deviations

rate of W k is dominated by the worst rates under the integral, we don’t get a positive rate.

�

C.3.4 Proofs of Lemma 4.3.1 and Theorem 4.3.1

Remark C.3.2. The KL divergence for two Bernoulli random variables is continuous and strictly

convex, with minima at a = b, when a, b ∈ (0, 1). Note that infa{giKL(a||ti) + g(i+ 1)KL(a||ti+1)},
for all feasible g, is also continuous and strictly convex in ti, ti+1, with minima at ti = ti+1.

One consequence of the above fact is that fixing either ti or ti+1 and moving the other farther

away monotonically increases KL, while moving it closer decreases KL.

Proof of Theorem 4.3.1

Proof. We use the same notation as the proof for Lemma C.3.3.

Part 1.

lim
k→∞

Wk = lim
k→∞

∑

0≤i<j<M

[∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)Pk(θ1, θ2|β)d(θ1, θ2)

]
(C.19)

=
∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)d(θ1, θ2) (C.20)

(C.20) follows from bounded convergence and Pk(θ1, θ2|β) → 1 for θ1 ∈ Sj , t2 /∈ Sj . Thus choosing

s to maximize (C.20) maximizes the asymptotic value of Wk.

Part 2. Follows directly from Lemma C.3.3. �

C.3. PROOFS 199

Proof of Lemma 4.3.1

Proof. Recall r(t) , − limk→∞
1
k log(W−Wk) = min0≤i≤M−2 infa∈R {gi+1KL(a||ti+1) + giKL(a||ti)}.

We show the following:

r(t) =

min

(
log(1− t1)−g1 ,

log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t
gi

gi−1+gi

i

]−gi−1−gi
for 1 < i < M − 1,

log(tM−2)−gM−2

)

and t∗ maximizes rw(t) ⇐⇒ all the terms inside the minimization rw(t∗) are equal. Further, the

optimal levels t∗ are unique. The result immediately follows, that {ti} is the unique solution that

equalizes the rates inside the minimization, by noting that the optimal r has t0 = 0, tM−1 = 1.

We first prove the alternative form for r. Note that {gi−1KL(a||ti−1) + giKL(a||ti)} is convex in

a, and so we can find an analytic form for the infinum over a.

Let ai = arg infa∈[ti−1,ti]{gi−1KL(a||ti−1) + giKL(a||ti)}

=⇒ ∇ai [gi−1KL(ai||ti−1) + giKL(ai||ti)] = 0

=⇒ ∇ai
[
gi−1

(
ai log

ai
ti−1

+ (1− ai) log
1− ai

1− ti−1

)
+ gi

(
ai log

ai
ti

+ (1− ai) log
1− ai
1− ti

)]
= 0

=⇒ gi−1

(
log

ai
ti−1

− log
1− ai

1− ti−1

)
+ gi

(
log

ai
ti
− log

1− ai
1− ti

)
= 0

=⇒ log

(
ai

1− ai

)gi−1+gi

= log

(
ti−1

1− ti−1

)gi−1

+ log

(
ti

1− ti

)gi

=⇒ ai
1− ai

=

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

=⇒ ai =
c

1 + c
, where c =

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

Then,

200 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

gi−1KL(ai||ti−1) + giKL(ai||ti)

= gi−1a log
a

ti−1
+ gia log

a

ti
+ gi−1(1− a) log

1− a
1− ti−1

+ gi(1− a) log
1− a
1− ti

= a

[
(gi−1 + gi) log

a

1− a + gi−1 log
1− ti−1

ti−1
+ gi log

1− ti
ti

]
+ log(1− a)gi−1+gi − log(1− ti−1)gi−1(1− ti)gi

= (gi−1 + gi) log(1− a)− log(1− ti−1)gi−1(1− ti)gi (C.21)

= −(gi−1 + gi) log

[[
1 +

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

]
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi

]

= −(gi−1 + gi) log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t
gi

gi−1+gi

i

]
(C.22)

Where line (C.21) uses a
1−a = c and (gi−1 + gi) log c = log

[(
ti−1

1−ti−1

)gi−1
(

ti
1−ti

)gi]
. Note that

the first and last rates emerge, respectively, by plugging in t0 = 0, tM = 1, which holds trivially at

the optimum from monotonicity.

We note that a similar derivation, of the large deviation rate for two binomial distributions with

different probability of successes and match rates, appears in Glynn and Juneja (2004). In that

work, the authors seek to optimize the g in order to identify the single best item out of a set of

possible items, and a concave program emerges. In this work, because we optimize the probability

of successes and care about retrieving a ranking of the items, no such concave or convex program

emerges.

Now we show that t∗ maximizes rw(t) ⇐⇒ all the terms inside the minimization rw(t) are equal.

equalizes =⇒ optimal. Let r(i) be the ith term in the minimization, starting at i = 1. Note

that (holding the other fixed) increasing ti increases the ith term monotonically and decreases the

(i + 1)th term monotonically. Suppose β s.t. r(i) = r(j)∀i, j. To increase the minimization term,

one must increase r(i) ,∀i. To increase r(1), t1 must increase, regardless of what the other levels are.

Then, to increase r(2), t2 must increase . . . to increase r(M − 2), tM−2 must increase. However, to

increase r(M − 1), tM−2 must decrease, and we have a contradiction. Thus, one cannot increase all

terms simultaneously.

equalizes ⇐= optimal. Suppose t maximizes r(t) but the terms inside the minimization are

not equal. Then ∃i s.t. r(i) = minj r(j) and either r(i) 6= r(i − 1) or r(i) 6= r(i + 1). r(i) can be

increased without lowering the overall rate. This method can be repeated ∀i : r(i) = minj r(j) and

so t would not be optimal, a contradiction.

Uniqueness follows from the overall rate unique determining t1, tM−2 and so iteratively uniquely

determining the rest. �

C.3. PROOFS 201

C.3.5 Additional necessary lemmas

Now, we begin the set-up that will lead to a proof for Theorem 4.3.2. It turns out that proving the

theorem requires, in the process, essentially proving our convergence result with M → ∞, Theo-

rem C.2.1. For Theorem 4.3.2, we need a lower bound for t1 as a function of M . This seems hard

to do in general. Luckily, in our case, there is a property for how t∗ changes when M is doubled.

Using this property, we can derive that t∗1 ≥ O(M−3).

Recall that step-wise increasing β with M intervals Si = [si, si+1) has levels {ti}M−1
i=0 , where

t0 = 1, tM−1 = 1, and s0 , 0, sM , 1.

Furthermore, we use the following notation for the large deviation rate

ri = −(gi−1 + gi) log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t
gi

gi−1+gi

i

]
(C.23)

for i ∈ {1 . . .M − 1}, which implies r1 = −g1 log(1− t1) and rM−1 = −gM−2 log(tM−2).

We further use rM−1 to be the rate achieved by the optimal βM with M intervals.

Lemma C.3.5. Suppose g uniform, i.e. gi = 1,∀i and that βM has values {ti}M−1
i=0 . Then

β2M−1 has values {t′i}2M−2
i=0 , where t′2i = ti,∀i ∈ {0 . . .M − 1}, t′1 = 1

2

(
1−√1− t1

)
and t′2M−3 =

1
2 (1 +

√
tM−2).

Proof. We first set the values t′2i = ti and then optimally choose the remaining values t′k, k odd.

Then, we show that the resulting large deviation rates between all adjacent pairs are equal. Then,

by the proof of Lemma 4.3.1, which showed that equalizing the rates between adjacent intervals is

a sufficient condition for optimality, β2M−1 has the levels {t′i}2M−2
i=0 .

Let r′ denote rates between adjacent t′ as r does for t. Supposing t′2 = t1, we find t′1 such that

r′1 = r′2 and t′1 < t′2.

− log(1− t′1) = −2 log

[√
(1− t′1)(1− t′2) +

√
t′1t
′
2

]

=⇒ 1− t′1 = (1− t′1)(1− t′2) + t′1t
′
2 + 2

√
(1− t′1)(1− t′2)t′1t

′
2

=⇒ t′1 =
1

2

(
1−

√
1− t′2

)
=

1

2

(
1−
√

1− t1
)

Similarly, r′2M−3 = r′2M−2 when t′2M−3 = 1
2 (1 +

√
tM−2). It follows that r′1 = r′2 = r′2M−3 = r′2M−2

by choosing such t′1, t
′
2M−3.

202 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Next, we find t′k ∈ (t′k−1, t
′
k+1) for k ∈ {3, 5, . . . 2M − 5} such that the rates r′k = r′k+1.

−2 log
[√

(1− t′k)(1− t′k−1) +
√
t′kt
′
k−1

]
= −2 log

[√
(1− t′k)(1− t′k+1) +

√
t′kt
′
k+1

]

=⇒ t′k =
c

1 + c
, where c =




√
1− t′k+1 −

√
1− t′k−1√

t′k−1 −
√
t′k+1




2

Now, we show that r′k = r′j ,∀j, k by showing that the difference between each rate ri and its analogous

rate r′2i is constant. rk = rj ,∀j, k by assumption and so r′k = r′j ,∀j, k follows.

rM−1 = − log tM−2 and r′2M−2 = − log 1
2 (1 +

√
tM−2). Thus if ri = − log x for some x, then

r2i = − log 1
2 (1 +

√
x) would imply that all the rates are equal. Thus, it is sufficient to show that

[√
(1− t′2i−1)(1− t′2i) +

√
t′2i−1t

′
2i

]2
=

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
(C.24)

≡
[√(

1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2

=
1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
(C.25)

where c =

[√
1− ti −

√
1− ti−1√

ti−1 −
√
ti

]2

The proof for (C.25) is algebraically tedious and is shown in Remark C.3.3 below.

Then, by the proof of Lemma 4.3.1, which shows that equalizing the rates inside the minimization

terms implies an optimal {ti}, β2M−1 has the levels {t′i}2M−2
i=0 .

�

Remark C.3.3.

[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2

=
1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]

where c =

[√
1− ti −

√
1− ti−1√

ti−1 −
√
ti

]2

Proof. Let x =
√
ti, y =

√
1− ti, z =

√
ti−1, and w =

√
1− ti−1. Note that x > z,w > y, y =

1− x2, w = 1− z2. Then,

c

c+ 1
=

(y − w)2

2− 2xz − 2yw
, and

1

c+ 1
=

(x− z)2

2− 2xz − 2yw

(To show the above two equalities, factor out 1
(x−z)2 from numerator and denominator, and substitute

y = 1− x2, w = 1− z2).

C.3. PROOFS 203

Now, the left hand side:

[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2

=
1

2− 2xz − 2yw

[√
(x− z)2y2 +

√
(y − w)2x2

]2

=
(x− z)2y2 + (y − w)2x2 + 2xy(x− z)(w − y)

2− 2xz − 2yw

√
(y − w)2 = w − y,

√
(x− z)2 = x− z

=
z2y2 + w2x2 − 2wxyz

2− 2xz − 2yw

The right hand side:

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]

=
1

2
[1 + (wy + xz)]

Multiplying both sides by 2− 2xz − 2yw, we have:

[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2

=
1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]

≡ z2y2 + w2x2 − 2wxyz = 1− (wy + xz)2

≡ z2(1− x2) + (1− z2)x2 − 2wxyz = 1− w2y2 − x2z2 − 2wxyz

≡ z2 − 2x2z2 + x2 = 1− (1− z2)(1− x2)− x2z2

≡ 0 = 0

�

Corollary C.3.1. Suppose g uniform, i.e. gi = 1,∀i. ∀ε > 0,∃M s.t. ∀M ′ ≥M , rM
′
< ε.

Proof. Let M = 2N ,M ′ = 2N+1 − 1, for some N . We show that rM
′ ≤ 1

2r
M . The corollary follows

by noting that rK
′
< rK ∀K ′ > K and that rK <∞,∀K.

204 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

rM − rM ′ = − log tMM−2 + log tM
′

M ′−2

= − log tMM−2 + log

[
1

2
+

1

2

√
tMM−2

]
Lemma C.3.5

= log


1

2

1

tMM−2

+
1

2

1√
tMM−2




≥ −1

2
log tMM−2

√
tMM−2 ≥ tMM−2

=⇒ rM
′ ≤ 1

2
rM

�

Corollary C.3.2. Suppose g uniform, i.e. gi = 1,∀i. ∀δ > 0,∃N s.t. ∀M ≥ N , maxk t
M
k − tMk−1 <

δ.

Proof. This corollary follows directly from Corollary C.3.1. If the rates are upper bounded, then so

are the level differences.

We first find where the rate is minimized given a width between levels of δ

xm = arg min
x
−2 log

[√
(1− x− δ)(1− x) +

√
x(x+ δ)

]

=
1

2
− 1

2
δ

Then given an upper bound of ε on the rate, there is a bound on δ determined by the largest possible

difference at levels symmetric around 1
2 .

rL = −2 log

[
2

√
(
1

2
− δ)(1

2
+ δ)

]

= − log
[
1− 4δ2

]

≥ ε when δ >
1

2

√
1− e−ε

�

Lemma C.3.6. Suppose g is non-decreasing in θ. Then, tM−2 ≥ 1− 1
M−1 .

Proof. Note that, with uniform matching, ∀x ∈ (0, 1], y ∈ [0, 1−x] the rate with values ti−1 = y, ti =

y+x is no more than the last with tM−2 = 1−x. With width x, in other words, the extreme points

C.3. PROOFS 205

have a larger rates than the middle points. For i /∈ {1,M − 1}:

ri = inf
a
{gi−1KL(a||ti−1) + giKL(a||ti)}

= inf
a
{KL(a||y) + KL(a||y + x)} uniform matching

= −2 log
[
(1− y)

1
2 (1− y − x)

1
2 + y

1
2 (y + x)

1
2

]
(C.26)

= − log
[
(1− y)(1− y − x) + y(y + x) + 2 [(1− y)(1− y − x)y(y + x)]

1/2
]

≤ − log(1− x)

Where line (C.26) follows from line (C.22).

By the proof of Lemma 4.3.1, the optimal levels equalize the rates between each level. Then,

when g is non-decreasing, gM−2 ≥ g`,∀` ∈ {1 . . .M − 3}. Then, at the same level differences, the

rate corresponding to the last level is no smaller. Thus, to equalize the rates, the last width must

be no larger than any other width. Thus, tM−2 ≥ 1− 1
L . �

Lemma C.3.7. With uniform matching (gi = 1), r2N+1−1 ≥ 1
5r

2N .

Proof. Let K = 2N ,K ′ = 2N+1 − 1. Note that tKK−1 ≥ 1
2 by Lemma C.3.6.

rK − rK′ = − log tKK−2 + log tK
′

K′−2

= − log tKK−2 + log

[
1

2
+

1

2

√
tKK−2

]
Lemma C.3.5

= log


1

2

1

tKK−2

+
1

2

1√
tKK−2




≤ log
(
tKK−2

)− 4
5

1

2

(
tKK−2

)−1
+

1

2

(
tKK−2

)− 1
2 ≤

(
tKK−2

)− 4
5 when tKK−2 ∈

[
1

2
, 1

]

=⇒ rK
′ ≥ 1

5
rK

�

Lemma C.3.8. With uniform matching (gi = 1), ∃C > 0 s.t. ∀M, tM1 ≥ CM−3.

206 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Proof. By Lemma C.3.7, ∃C2 > 0 s.t. rM ≥ C25−dlog2 Me. Then

− log(1− tM1) = rM

≥ C25−dlog2 Me

=⇒ tM1 ≥ 1− exp
[
−C25−dlog2 Me

]

≥ 1− exp
[
−C3M

− 1
log5 2

]

≥ e− 1

e
C3M

− 1
log5 2 e−x ≤ 1− e− 1

e
x for x ∈ [0, 1]

=⇒ ∃C > 0 s.t. tM1 ≥ CM−3

�

Corollary C.3.3. With monotonically non-decreasing g, ∃C > 0 s.t. ∀M, tM1 ≥ CM−3.

Proof. The result follows from noting that tM1 with uniform matching lower bounds the first value

with any other monotonically non-decreasing g, which is a direct application of Lemma C.2.1 – scale

g such that g1 = 1. Then, gj ≥ 1, j > 1 and g0 ≤ 1. Then, the condition of the lemma holds. �

Lemma C.3.9. The run-time of NestedBisection is O(M log2 1
δ), where δ is the bisection grid width

and M is the number of intervals.

Proof. The outer bisection, in main, runs at most log2
2
δ + 1 iterations. Each outer iteration calls

BisectNextLevel M − 3 times, and the inner bisection in each call runs for at most log2
2
δ iterations.

Thus the run-time of algorithm is O(M log2 1
δ). �

C.3.6 Proof for Theorem 4.3.2

Finally, we are ready to prove Theorem 4.3.2. It follows from formalizing the relationship between

δ, the bisection grid width, and ε, the additive approximation error in the rate function.

Proof. Recall M is the number of intervals (levels) in β. We use j, t, t∗ to denote the levels in a

certain iteration, the returned levels, and the optimal levels, respectively. We use r(·) to denote the

individual rates between returned levels, i.e. r(1) = −g1 log(1− t1), r(m) = {gm−1KL(am||tm−1) +

gmKL(am||tm)},m ∈ {2 . . .M − 2}, r(M − 1) = −gM−2 log(tM−2), and use r∗ to denote the optimal

rate.

By Lemma C.3.6, t∗M−2 ≥ 1− 1
M−1 . By assumption, t∗M−2 < 1−δ. Thus, t∗M−2 ∈ [1− 1

M−1 , 1−δ],
the starting interval for the outer bisection.

First, suppose the outer bisection terminates such that tM−2 ≤ t∗M−2 + δ. We prove that this

case always occurs below.

C.3. PROOFS 207

In this case, r∗−r(M−1) is at most−gM−2 log(t∗M−2)+gM−2 log(t∗M−2+δ) = gM−2 log
(
t∗M−2+δ

t∗M−2

)
.

For all m ∈ {M − 2 . . . 2}, in the final CalculateOtherLevels call the algorithm will use bisection to

match the corresponding rate with this last rate, r(M − 1) = −gM−2 log(tM−2), setting tm−2 to the

smallest value such that r(m) ≤ r(M − 1) (i.e. the right end of the final interval is chosen).

Then, ∀m ∈ {M − 2 . . . 2}, r(m) ∈ [r(M − 1)− ε(δ), r(M − 1)], where ε(δ) is an upper bound on

the change in the rate functions with a shift of δ in one of the parameters.

For now, assume r(1) = −g1 log(t1) ≥ r(M − 1). We prove that this occurs below. Then,

r(m) ≥ r(M − 1)− ε(δ) ∀m ∈ {1 . . .M}
≥ −gM−2 log

(
t∗M−2 + δ

)
− ε(δ)

Now we characterize ε(δ) in the region [t∗1 + δ, t∗M−2 + δ]. In particular, we want to bound the

rate loss from the other levels r(m),m > 1 after the gM−2 log
(
t∗M−2+δ

t∗M−2

)
loss in in r(M − 1). Note

that the only source of error is a level shifting right by δ. rj(·) denotes individual rates between

levels j in an intermediary iteration. Let a′i be the minimum point inside the rate infimum after the

shift by δ.

ε(δ) = sup
ti−1,ti

[gi−1KL(ai||ti−1) + giKL(ai||ti)− gi−1KL(a′i||ti−1 + δ)− giKL(a′i||ti)]

≤ sup
ti−1,ti

[gi−1KL(a′i||ti−1) + giKL(a′i||ti)− gi−1KL(a′i||ti−1 + δ) + giKL(a′i||ti)] ai is inf point

= sup
ti−1,ti

gi−1

[
a′i log

ti−1 + δ

ti−1
+ (1− a′i) log

1− ti−1 − δ
1− ti−1

]

≤ sup
ti−1,ti

gi−1

[
a′i log

ti−1 + δ

ti−1

]
2nd term negative

≤ gM−2

[
log

t∗1 + δ

t∗1

]
tj ≥ t∗1, gj ≤ gM−2

=⇒ r(m) ≥ r∗ − gM−2 log

(
t∗M−2 + δ

t∗M−2

)
− gM−2

[
log

t∗1 + δ

t∗1

]

≥ r∗ − gM−2
δ

t∗M−2

− gM−2
δ

t∗1
log(1 + x) ≤ x

≥ r∗ − δgM−2

[
M − 1

M − 2
+

1

t∗1

]
t∗M−2 ≥ 1− 1

M − 1

By Corollary C.3.3, ∃C > 0 s.t. t∗1 ≥ CM−3 =⇒ r(m) ≥ r∗ − δgM−2

[
M−1
M−2 + CM3

]
. Then, let

δ = ε

gM−2[M−1
M−2 +CM3]

. Supposing the algorithm terminates in such an iteration, it finds an ε-optimal

β in time O

(
M log2 gM−2[M−1

M−2 +CM3]
ε

)
= O

(
M log2 M

ε

)
.

208 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Next, we show that the algorithm only terminates the outer bisection when u ≤ t∗M−2 + δ. The

claim follows from ` ≤ t∗M−2 being an algorithm invariant. The initial ` = 1 − 1
M−1 ≤ t∗M−2

by Lemma C.3.6. ` can only be set to be > t∗M−2 if in the current iteration, jM−2 > t∗M−2 and

rj(1) < rj(M − 1). However, if jM−2 ≥ t∗M−2, then rj(1) ≥ rj(M − 1) (jm ≥ t∗m∀m), following

from a shifting argument like that given in Lemma 4.3.1 and that the inner bisection is such that

rj(m) ≤ rj(M − 1),m ∈ {2 . . .M − 2}, i.e. all the values tm > t∗m. Thus, ` ≤ t∗M−2 is an algorithm

invariant and u > t∗M−2 + δ =⇒ u− ` > δ.

Finally, we show that r(1) ≥ r(M − 1) at the returned {ti}. By assumption, in the initial iter-

ation, u ≥ t∗M−2, and recall that the returned {ti} such that tM−2 = u from the final iteration. As

shown in the previous paragraph, jM−2 ≥ t∗M−2 =⇒ rj(1) ≥ rj(M − 1). Thus, if the algorithm

terminates in the first iteration, then r(1) ≥ r(M − 1). In any subsequent iteration, u is changed

only if rj(1) ≥ rj(M − 1) at its new value. Thus, rj(1) ≥ rj(M − 1) is an algorithm invariant, and

r(1) ≥ r(M − 1).

The algorithm terminates in finite time. Thus, it terminates when tM−2 = u ≤ t∗M−2 + δ and

finds a (ε,M, g)-optimal β in time O
(
M log2 M

ε

)
.

�

In Theorem 4.3.2, there is an guarantee of an additive error away from the optimal rate. To

instead have a multiplicative error bound for uniform matching, one can use the lower bound on

the optimal rate from Lemma C.3.7, ∃C > 0 s.t. r∗ ≥ CM−3. Then, for uniform matching, the

algorithm returns a (1− ε) multiplicative approximation in time O
(
M log2 M

ε

)
.

C.3.7 Proof of Theorem C.2.1

Let βwM denote the optimal β with M intervals for weight function w, with intervals swM and levels

twM . Let qwM (θ) = i/M when θ ∈ [swMi , swMi+1), i.e. the quantile of interval item of type θ is in.

Then we have the following convergence result for βM .

Theorem C.2.1. Let g be uniform. Suppose w such that qwM converges uniformly. Then, ∀C ∈
N,∃βw s.t. βwC2N+1 → βw uniformly as N →∞.

Proof. Note that the condition on q implies that ∃M s.t. ∀M > M, ∀θ,∃xθ such that θ ∈
[
sMbxθMc, s

M
dxθMe

)
.

Let M ′ = 2M − 1,M ′′ = 4M − 3,Mq = 2qM − 2q + 1. θ ∈
[
sMbxθMc, s

M
dxθMe

)
=⇒ βM (θ) =

C.3. PROOFS 209

tMbxθMc ∈
[
tMbxθMc−1, t

M
bxθMc+1

]
. Then,

βM ′(θ) = tM
′

bxθM ′c

= tM
′

bxθ(2M−1)c

∈
[
tM
′

2bxθMc−2, t
M ′
2bxθMc+2

]

⊂
[
tMbxθMc−1, t

M
bxθMc+1

]
Lemma C.3.5

And, for general q,

βMq (θ) = tM
q

bxθ(2qM−2q+1)c

∈
[
tM

q

bxθ2qMc−2q , t
Mq

bxθ(2qM)c+1

]

⊂
[
tM

q

2qbxθMc−2q , t
Mq

2qbxθMc+1

]

⊂
[
tMbxθMc−1, t

M
bxθMc+1

]
Lemma C.3.5

Then, ∀N ′ > 1, θ: β2N′M−2N′+1(θ) ∈
[
tMbxθMc−1, t

M
bxθMc+1

]
and

|β2N′M−2N′+1(θ)− βM (θ)| ≤ tMbxθMc+1 − tMbxθMc−1

By Corollary C.3.2, ∀δ > 0,∃K s.t. ∀K ′ > K, tK
′
bxθK′c+1 − tK

′
bxθK′c−1 < 2δ.

By the Cauchy criterion, ∃β s.t. β(C−1)2N+1 → β uniformly.

By change of variables, ∃β s.t. βC2N+1 → β uniformly. �

Corollary C.3.4. For Kendall’s tau and Spearman’s rho correlation measures, ∃β s.t. β2N → β

uniformly as N →∞.

Proof. For Kendall’s tau and Spearman’s rho, {si} is spaced such that ∀i, j, si − si−1 = sj − sj−1.

Thus, xθ = θ meets the criterion. �

C.3.8 Kendall’s tau and Spearman’s rho related proofs

Definition C.3.1 (see e.g. Embrechts et al. (2003); Nelsen (2007)). The population version of

Kendall-tau correlation between item true quality and rating scores is proportional to

W τ
k , 2

∫

θ1>θ2

Pk(θ1, θ2)dθ1dθ2

210 APPENDIX C. DESIGNING OPTIMAL BINARY RATING SYSTEMS

Similarly, given items with qualities θ1, θ2, θ3, the population version of Spearman’s rho correlation

between item true quality and rating scores is

W ρ
k , 6

∫

θ1>θ2,θ3

Pk(θ1, θ3)dθ1dθ2dθ3

Lemma C.3.10. Spearman’s ρ can also be written as being proportional to
∫
θ1>θ2

(θ1−θ2)Pk(θ1, θ2)dθ1dθ2,

i.e. with w(θ1, θ2) = (θ1 − θ2).

Proof. Recall Pk(θ1, θ3) =

Pr((θ1 − θ2)(xk1 − xk3) > 0)

=

∫

θ1>θ2,θ3

Pr(xk1 − xk3 > 0)dθ1dθ2dθ3 +

∫

θ1<θ2,θ3

Pr(xk1 − xk3 < 0)dθ1dθ2dθ3

=

∫

θ1,θ3

Pr(xk1 − xk3 > 0)

[∫ θ1

θ2=0

dθ2

]
dθ1dθ3 +

∫

θ1,θ3

Pr(xk1 − xk3 < 0)

[∫ 1

θ2=θ1

dθ2

]
dθ1dθ3

=

∫

θ1,θ3

[
Pr(xk1 − xk3 > 0)θ1] + Pr(xk1 − xk3 < 0)(1− θ1)

]
dθ1dθ3

=

∫

θ1,θ3

[
Pr(xk1 − xk3 < 0) + θ1

[
Pr(xk1 − xk3 > 0)− Pr(xk1 − xk3 < 0)

]]
dθ1dθ3

Similarly,

Pr((θ1 − θ2)(xk1 − xk3) < 0) =

=

∫

θ1,θ3

[
Pr(xk1 − xk3 > 0) + θ1

[
Pr(xk1 − xk3 < 0)− Pr(xk1 − xk3 > 0)

]]
dθ1dθ3

=

∫

θ1,θ3

[
Pr(xk3 − xk1 > 0) + θ3

[
Pr(xk3 − xk1 < 0)− Pr(xk3 − xk1 > 0)

]]
dθ1dθ3

Where the second equality follows from θ1, θ3 interchangeable. Then

W ρ
k = 3

∫

θ1,θ2

(θ1 − θ2)Pk(θ1, θ2)dθ1dθ2

=

∫

θ1>θ2

6(θ1 − θ2)Pk(θ1, θ2)dθ1dθ2

�

Note that Spearman’s ρ is similar to Kendall’s τ with an additional weighting for how far apart

the two values that are flipped are.

C.3. PROOFS 211

Lemma C.3.11. When w is constant, i.e. for Kendall’s τ rank correlation, the intervals s that

maximize (C.20),

∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)d(θ1, θ2) =

∑

0≤i<j<M

(si+1 − si)(sj+1 − sj) (C.27)

, are {si = i
M }Mi=0.

Lemma C.3.12. When w is (θ1 − θ2), i.e. for Spearman’s ρ rank correlation, the intervals s that

maximize (C.20), ∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)d(θ1, θ2) (C.28)

are {si = i
M }Mi=0, i.e. the same as those for Kendall’s τ .

Proof.

∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
w(θ1, θ2)d(θ1, θ2) =

∑

0≤i<j<M

∫

θ2∈Si,θ1∈Sj
(θ1 − θ2)d(θ1, θ2)

=
∑

0<i<j≤M

(
sj + sj−1

2
− si + si−1

2

)
(si − si−1)(sj − sj−1)

Finding an asymptotically optimal {si} then is a constrained third order polynomial maximization

problem with M variables. The maximum is achieved at {si = i
M }i=Mi=0 , as for Kendall’s tau

correlation. �

Appendix D

Iterative Local Voting

D.1 Mechanical Turk Experiment Additional Information

In this section, we provide additional information regarding our Amazon Mechanical Turk experi-

ment, including a walk-through of the user experience. Furthermore, we have a live demo accessible

at: http://gargnikhil.com/projectdetails/IterativeLocalVoting/. This demo will remain

online for the foreseeable future.

Figures D.1 through D.5 show screenshots of the experiment. We now walkthrough the experiment:

� Figure D.1 – Welcome page. Arriving from Amazon Mechanical Turk, the workers read an

introduction and the consent agreement.

� Figure D.2 – Instructions (shown are L2 instructions). The workers read the instructions,

which are also provided on the mechanism page. There is a 5 minute limit for this page.

� Figures D.3, D.5 – Mechanism page for L2 and Full Elicitation, respectively. For the former,

workers are asked to move to their favorite point within a constraint set, for 2 different budget

points. The “Current Credit Allocation” encodes the constraint set – as workers move the

budget bars, it shows how much of their movement budget they have spent, and on which

items. The other constrained movement mechanisms are similar. For the Full Elicitation

mechanism, voters are simply asked to indicate their favorite budget point and weights. The

instructions are repeated on the mechanism page as well at the top. There is a 10 minute limit

for this page.

� Second mechanism, 30% of workers. Some workers were asked to do both one of the L1,L2,

or L∞, and the Full Elicitation mechanism. For these workers, the Full Elicitation mechanism

shows up after the constrained mechanism.

212

http://gargnikhil.com/projectdetails/IterativeLocalVoting/

D.2. INDIFFERENCE REGIONS ADDITIONAL INFORMATION 213

Figure D.1: Page 1 – Welcome Page for all mechanisms

Figure D.2: L2 Page 2 – Instructions

� Figure D.4 – Feedback page. Finally, workers are asked to provide feedback, after which they

are shown a code and return to the Mechanical Turk website.

D.2 Indifference Regions Additional Information

We now present some additional data for the claim in Section 5.5.2, that voters have large indifference

regions on the space. In particular, Figures D.6 and D.7 reproduce Figure 5.5 but with workers who

provided explanations longer (and shorter) than the median response, respectively. This split can

(roughly) correspond to workers who may have answered more or less sincerely to the budgeting

question. We find that the response distribution, as measured by the fraction of possible movement

one used when far away from one’s ideal point on a given dimension, are similar.

214 APPENDIX D. ITERATIVE LOCAL VOTING

Figure D.3: L2 Page 3 – Mechanism

Figure D.4: Page 4 – Feedback for all mechanisms

D.2. INDIFFERENCE REGIONS ADDITIONAL INFORMATION 215

Figure D.5: Full Elicitation Page 3 – Mechanism

0.0 0.2 0.4 0.6 0.8 1.0
Movement as fraction of possible movement

0.0

0.1

0.2

0.3

0.4

0.5

H
is

to
g
ra

m
p

d
f

All Near Ideal Pt Far from Ideal Pt

Figure D.6: Fraction of possible movement in each dimension in L∞, conditioned on distance to
ideal pt. The ‘All’ condition contains data from all three L∞ instances, whereas the others only
from the instance that also did full elicitation. This plot only includes those people who provided
an explanation as long or longer than the median explanation provided (197 characters).

216 APPENDIX D. ITERATIVE LOCAL VOTING

0.0 0.2 0.4 0.6 0.8 1.0
Movement as fraction of possible movement

0.0

0.1

0.2

0.3

0.4

0.5

H
is

to
g
ra

m
p

d
f

All Near Ideal Pt Far from Ideal Pt

Figure D.7: Fraction of possible movement in each dimension in L∞, conditioned on distance to
ideal pt. The ‘All’ condition contains data from all three L∞ instances, whereas the others only
from the instance that also did full elicitation. This plot only includes those people who provided
an explanation shorter than the median explanation provided (197 characters).

D.3. PROOFS 217

D.3 Proofs

In this appendix, we include proofs for all the theorems in the paper.

D.3.1 Known SSGM Results

Theorem D.3.1. (Nemirovski et al., 2009; Strassen, 1965) Let θ ∈ Θ be a random vector with

distribution P. Let f̄(x) = E[f(x, θ)] =
∫

Θ
f(x, θ)dP (θ), for x ∈ X , a non-empty bounded closed

convex set, and assume the expectation is well-defined and finite valued. Suppose that f(·, θ), θ ∈ Θ

is convex and f̄(·) is continuous and finite valued in a neighborhood of point x.

For each θ, choose any g(x, θ) ∈ ∂f(x, θ). Then, there exists ḡ(x) ∈ ∂f̄(x) s.t. ḡ(x) = Eθ[g(x, θ)].

This theorem says that the expected value of the sub-gradient of the utility at any point x

across voters is a subgradient of the societal utility at x, irrespective of how the voters choose the

subgradient when there are multiple subgradients, i.e., when the utility function is not differentiable.

This key result allows us to use the subgradient of utility function of a sampled voter as an unbaised

estimate of the societal subgradient.

Now, consider a convex function f on a non-empty bounded closed convex set X ⊂ RM , and use

[·]X to designate the projection operator. Starting with some x0 ∈ X , consider the SSGM update

rule xt = [xt−1−rt(ḡt+zt+bt)]X , where zt is a zero-mean random variable and bt is a constant, and

ḡt ∈ ∂f(xt). Let Et[·] be the conditional expectation given Ft, the σ-field generated by x0, x1, . . . , xt.

Then we have the following convergence result.

Theorem D.3.2. (Jiang and Walrand, 2010) Consider the above update rule. If

f(·) has a unique minimizer x∗ ∈ X
rt > 0,

∑

t

rt =∞,
∑

t

r2
t <∞

∃C1 ∈ R <∞ s.t. ‖∂f(x)‖2 ≤ C1,∀x ∈ X
∃C2 ∈ R <∞ s.t. Et[‖zt‖2] ≤ C2,∀ t
∃C3 ∈ R <∞ s.t. ‖bt‖2 ≤ C3,∀ t∑

t

rt‖bt‖ <∞ w.p. 1

Then xt → x∗ w.p. 1 as t→∞.

Note: Jiang and Walrand (2010) prove the result for gradients, though the same proof follows

for subgradients. Only the inequality [x∗ − xt]T gt ≤ f(x∗) − f(xt) for gradient gt at iteration t is

used, which holds for subgradients. Boyd and Mutapcic provide a general discussion of subgradient

218 APPENDIX D. ITERATIVE LOCAL VOTING

methods, along with similar results. Shor (1998), in Theorem 46, provide a convergence proof for

the stochastic subgradient method without projections and the extra noise terms.

D.3.2 Mapping ILV to SSGM

As described in Section 5.3, suppose that hX is the induced probability distribution on the ideal

values of the voters. In the following discussion, we will refer to voters and their ideal solutions

interchangeably.

Next, we restate ILV without the stopping condition so that it looks like the stochastic subgra-

dient method. Consider Algorithm 4.

Algorithm 4: ILV

1 Start at some x0 ∈ X . For t ≥ 1,

� Sample voter vt ∈ V from hV .

� Compute xt = [xt−1 − rtg̃vt(xt)]X , where rt = r0
t

and rtg̃vt(xt) is
movement given by voter vt.

We want to minimize the societal cost, f̄(x) = E[fv(x)]. From Theorem D.3.1, it immediately

follows that if each voter v articulates a subgradient of her utility function for all x, i.e. g̃v(x) ∈
∂fv(x), then from Theorem D.3.2, we can conclude that the algorithm converges. However, users

may not be able to articulate such a subgradient. Instead, when the voters respond correctly to

query (1) (i.e. move to their favorite point in the given Lq neighborhood), we have

g̃vt(xt) =
xt − arg minx[fvt(x) : ‖x− xt‖q ≤ rt]

rt
(2)

Furthermore, for all the proofs, we assume the following.

1. The solution space X ⊂ RM is non-empty, bounded, closed, and convex.

2. Each voter v has a unique ideal solution xv ∈ X .

3. The ideal point xv of each voter is drawn independently from a probability distribution with a

bounded and measurable density function hX on M dimensions:

there exists C s.t. ∀x we have hX (x) ≤ C. This assumption allows us to bound the probability

of errors that occur in small regions of the space.

D.3.3 Proof of Theorem 5.3.1

Let the disutility, or cost to voter v ∈ V be fv(x) = ‖x − xv‖p for all x ∈ X . We use the following

technical lemma:

D.3. PROOFS 219

Lemma D.3.1. For q ∈ {1, 2,∞}, there exists K2 ∈ R+ s.t. ‖g̃v(x)− gt‖2 ≤ K2, ∀ gt ∈ ∂fv(x) for

any v and x.

The lemma bounds the error in the movement direction from the gradient direction, by noting that

both the movement direction and the gradient direction have bounded norms.

We also need the following lemma, which is proved separately for each case in the following sections.

Lemma D.3.2. Suppose that fv(x) , ‖xv − x‖p and define the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as defined in (2). Then there exists C ∈ R s.t. ∀ n, P(At = 1|Ft) ≤ Crt, when

(p = 2, q = 2), (p = 1, q =∞), or (p =∞, q = 1).

The lemma can be interpreted as follows: At indicates a ‘bad’ event, when a voter may not be

providing a true subgradient of her utility function. However, the probability of the event occurring

vanishes with rt, which, as we will see below, is the right rate for the algorithm to converge.

Theorem 5.3.1. Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Lp
normed, and voters respond to query (1) according to either Model A or Model B. Then, ILV

with Lq neighborhoods converges to the societal optimal point w.p. 1 when (p, q) = (2, 2), (1,∞), or

(∞, 1).

Proof. We will show that Algorithm 4 meets the conditions in Theorem D.3.2. Let bt , Et[g̃vt(xt)]−
ḡt and zt , g̃vt(xt)−Et[g̃t], for some ḡt ∈ ∂f̄(xt). Then, g̃vt(xt) can be written as g̃vt(xt) = ḡt+zt+bt.

We show that bt, zt meet the conditions in the theorem, and so the algorithm converges.

Let At be the indicator function described in Lemma D.3.2. Then, for some ḡt ∈ ∂f̄(xt),

bt = Et[g̃vt(xt)]− ḡt
= Et[g̃vt(xt)]− Et[gt] Theorem D.3.1, i.i.d sampling of v

= P(At = 1|Ft)(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1])

+ P(At = 0|Ft)(Et[g̃vt(xt)|At = 0]− Et[gt|At = 0])

= P(At = 1|Ft)(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1])

≤ Crt(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1]). Lemma D.3.2

220 APPENDIX D. ITERATIVE LOCAL VOTING

Combining with Lemma D.3.1, and the fact that rt = r0/t, we have

∑
rt‖bt‖ ≤ ∞ and there exists C1 ∈ R <∞ s.t. ‖bt‖2 ≤ C1,∀ t.

Finally, note that ‖zt‖ , ‖g̃vt(xt) − Et[g̃vt(xt)]‖ is bounded for each t because the ‖g̃vt(xt)‖ is

bounded as defined. Thus, all the conditions in Theorem D.3.2 are met for both bt and zt, and the

algorithm converges. �

D.3.4 Proof of Theorem 5.3.2

Instead of moving to their favorite point on the ball, voters now instead move in the direction of the

gradient of their utility function to the boundary of the given neighborhood. In this case, we have:

g̃vt(xt) =
gvt
‖gvt‖q

; for gvt ∈ ∂fvt(xt). (D.1)

The key to the proof is the following observation, that the q norm of the gradient of the p norm,

except at the ideal points on each dimension, is constant. This observation is formalized in the

following lemma:

Lemma D.3.3. ∀ (p, q) s.t. p > 0, q > 0, and 1/p+ 1/q = 1, ‖∇‖x− xv‖p‖q = 1,∀x s.t. xm 6= xmv

for any m.

Theorem 5.3.2. Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Lp
normed, and voters respond to query (1) according to Model B. Then, ILV with Lq neighborhoods

converges to the societal optimal point w.p. 1 for any p > 0 and q > 0 such that 1/p+ 1/q = 1.

Proof. Since the probability of picking a voter v such that xmt = xmv for some dimension m is 0, we

have g̃vt(xt) = gvt for gvt = ∇fvt(xt). Thus we obtain the gradient exactly, and hence Theorem D.3.2

applies with bt = 0 for all t. �

D.3.5 Proof of Propositions

We now turn our attention to the case of Weighted Euclidean utilities and show that Algorithm 4

converges to the societal optimum. The analogue to Lemma D.3.2 for this case is (proved in the

following subsection):

Lemma D.3.4. Suppose that fv(x) ,
∑K
k=1

wkv
‖wv‖2 ‖x

k − xkv‖2, and define the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as defined in (2) for q = 2. Then there exists C ∈ R s.t. ∀n, P(At = 1|Ft) ≤ Crt.

D.3. PROOFS 221

Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are Weighted Euclidean,

and voters correctly respond to query (1) according to either Model A or Model B. Then, ILV

with L2 neighborhoods converges with probability 1 to the societal optimal point.

Proof. The proof is then similar to that of Theorem 5.3.1, and the algorithm converges to x∗ =

arg min E
[∑K

k=1 w
k
v‖x

k−xkv‖2
‖wv‖2

]
. �

Now, we sketch the proof for fully decomposable utility functions and L∞ neighborhoods.

Suppose that conditions C1, C2, and C3 are satisfied, the voter utilities are decomposable,

and voters respond to query (1) according to either Model A or Model B. Then, ILV with L∞
neighborhoods converges with probability 1 to a point in the set of medians x̄.

Proof. Consider each dimension separately. If xmt−1 < xmv , then the sampled voter increases xmt−1 by

rt as long as xmt−1 + rt ≤ xmv . On the other hand if xmt−1 > xmv , then the sampled voter decreases

xmt−1 by rt as long as xmt−1 − rt ≥ xmv . Thus except for when a voter’s ideal solution is too close to

the current point, the algorithm can be seen as performing SSGM on each dimension separately as

if the utility function was L1 (the absolute value) on each dimension. Thus a proof akin to that of

Theorem 5.3.1 with p = 1, q =∞ holds. �

D.3.6 Proof of Theorem 5.3.3

We now show that the algorithm finds directional equilibria in the following sense: if under a

few conditions a trajectory of the algorithm converges to a point, then that point is a directional

equilibrium.

Theorem 5.3.3. Suppose that C1, C2, and C3 are satisfied, and let G(x) , Ev
[
∇fv(x)
‖∇fv(x)‖2

]
. Sup-

pose, G(x) is uniformly continuous, L2 movement norm constraints are used, and voters move

according to Model B. If a trajectory {x}∞t=1 of the algorithm converges to x∗, i.e. xt → x∗, then

x∗ is a directional equilibrium, i.e. G(x∗) = 0.

Proof. Suppose x∗ is not a directional equilibrium, i.e. ∃ε > 0 s.t. ‖G(x∗)‖2 = ε. Consider a

δ-ball around x∗, Bδ , {x : ‖x∗ − x‖2 < δ}, with δ, ε2 > 0 chosen such that ∃m ∈ {1 . . .M} s.t.

∀x ∈ Bδ, sign(Gm(x)) = sign(Gm(x∗)) and |Gm(x)| > ε2, i.e. the gradient in the mth dimension

does not change sign and has magnitude bounded below. Such a δ, ε2 exists by the continuity as-

sumption (if x∗ is not a directional equilibrium, at least 1 dimension of G(x∗) is non-zero and thus

one can construct a ball around x∗ such that G(x), x ∈ Bδ in that dimension satisfies the conditions).

Now, one can show that the probability of leaving neighborhoods around x∗ goes to 1: ∀t > 0, 0 <

δ2 < δ, w.p. 1 ∃τ ≥ t s.t. ‖xτ − x∗‖2 > δ2.

222 APPENDIX D. ITERATIVE LOCAL VOTING

Suppose xt ∈ Bδ2 (otherwise τ = t satisfies), rk = 1
k .

xτ = xt +

τ∑

k=t

∆xk ∆xk , −rk
∇fvk(xk)

‖∇fvk(xk)‖2

‖xτ − x∗‖2 = ‖xt − x∗ +

τ∑

k=t

∆xk‖2

≥ ‖
τ∑

k=t

∆xk‖2 − ‖xt − x∗‖2

≥ ‖
τ∑

k=t

∆xk‖2 − δ2

‖
τ∑

k=t

∆xk‖2 ≥ |
τ∑

k=t

∆xk,m| defn of ‖ · ‖2

= |Ev
[

τ∑

k=t

∆xk,m

]
+

τ∑

k=t

∆xk,m − Ev

[
τ∑

k=t

∆xk,m

]
|

≥ |Ev
[

τ∑

k=t

∆xk,m

]
| − |

τ∑

k=t

∆xk,m − Ev

[
τ∑

k=t

∆xk,m

]
|

By Hoeffding’s inequality,

Pr

(
τ∑

k=t

∆xk,m − Ev

[
τ∑

k=t

∆xk,m

]
≥ ε3

)
≤ exp

[
−2(τ − t)2ε23

2
∑τ
k=t

1
k

]

→ 0 as τ →∞

Furthermore, by the continuity assumption,

|Ev
[

τ∑

k=t

∆xk,m

]
| , |

τ∑

k=t

rkGm(xk)|

→ ∞ as τ →∞ while xk ∈ Bδ2

Thus, Pr(‖xτ −x∗‖2 > δ2)→ 1 as τ →∞. Thus, if an infinite trajectory converges to x∗, then w.p.

1, then x∗ is a directional equilibrium. �

D.3.7 Proofs of Lemmas

Lemma D.3.1 For q ∈ {1, 2,∞}, ∃K2 ∈ R+ <∞ s.t. ‖g̃vt − gt‖2 ≤ K2, ∀ gt ∈ ∂fvt(xt), vt, xt.

D.3. PROOFS 223

Proof.

‖g̃vt(xt)− gt‖2 ≤ ‖g̃vt(xt)‖2 + ‖gt‖2

=
‖xt − arg minx[‖x− xvt‖p : ‖x− xt‖q ≤ rt]‖2

rt
+ ‖gt‖2

≤ K1 + ‖gt‖2
≤ K2

for some K1,K2 ∈ R+. The second inequality follows from the fact that for finite M-dimensional vec-

tor spaces, ‖y‖2 ≤ ‖y‖1 and ‖y‖2 ≤
√
M‖y‖∞. The third follows from the norm of the subgradients

of the p norm being bounded. �

Lemma D.3.2, case (p = 2, q = 2).

Proof. Remember that At , I{g̃vt(xt) /∈ ∂fvt(xt)}. Let Bt = I{‖xvt − xt‖2 ≤ rt}. We show

that A) Bt = 0 =⇒ At = 0, and B) ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt. Then, ∃C ∈ R s.t.

P(At = 1|Ft) ≤ Crt.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that

∂fvt(x) = ∂‖x− xvt‖2

=




{ x−xvt
‖xvt−x‖2

} x 6= xvt

{g : ‖g‖2 ≤ 1} x = xvt

If ‖xvt − xt‖2 > rt , then

arg min
x

[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt] = xt + rt
xvt − xt
‖xvt − xt‖2

Then,

g̃vt(xt) =
xt − arg minx[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt]

rt
Definition

=
xt −

(
xt + rt

xvt−xt
‖xvt−xt‖2

)

rt

=
xt − xvt
‖xvt − xt‖2

∈ ∂fvt(xt)

Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

224 APPENDIX D. ITERATIVE LOCAL VOTING

P(Bt = 1|Ft) = P(‖xvt − xt‖2 ≤ rt|Ft)

=

∫

x∈{x:‖x−xt‖2≤rt}
hX|Ft(x)dx

=

∫

x∈{x:‖x−xt‖2≤rt}
hX (x)dx v drawn independent of history

≤ Cr2
t bounded hX

≤ Crt rt ≤ 1 eventually

for some C ∈ R <∞. Note that C depends on the volume of a sphere in M dimensions. �

Lemma D.3.2, case (p = 1, q =∞).

Proof. Let hvt(xt) ,
[
sign(x1

vt − x1
t), . . . , sign(xmvt − xmt), . . . , sign(xMvt − xMt)

]T

Let Bt = I{∃m, |xmvt − xmt | ≤ rt}. We show the the same two parts as in the above proof.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that the subgradients are

∂fvt(x) = ∂‖x− xvt‖1
= {g : ‖g‖∞ ≤ 1, gT (x− xvt) = ‖x− xvt‖1}

If ∀m, |xmvt − xmt | > rt, then

arg min
x

[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt] = xt + rthvt(xt)

Then,

g̃vt(xt) =
xt − arg minx[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt]

rt
Definition

=
xt − (xt + rthvt(xt))

rt

= −hvt(xt)
∈ ∂fvt(xt)

Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

D.3. PROOFS 225

P(Bt = 1|Ft) = P(∃m : |xmvt − xmt | ≤ rt|Ft)

=

∫

x∈{x:∃m,|xm−xmt |≤rt}
hX|Ft(x)dx

=

∫

x∈{x:∃m,|xm−xmt |≤rt}
hX (x)dx v drawn independent of history

≤ Crt bounded hX , fixed M, bounded X

for some C ∈ R < ∞. In the last line, C u 2M(diameter(X)), based on the volume of the slices

around the ideal points on each dimension. �

Lemma D.3.2, case (p = 1, q =∞).

Proof. Let m̄t ∈ arg maxm |xmvt − xmt |,
Let hvt(xt) ,

[
0, 0, . . . , 0, sign(xm̄tt − xm̄tvt), 0, . . . , 0, 0

]T
,

Let Bt , I{∃m 6= m̄t : |xm̄tvt − x
m̄t
t | < |xmvt − xmt | + rt}. We show the the same two parts as in the

above proofs.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):

First, note that when Bt = 0, the set of subgradients is

∂fvt(x) = ∂‖x− xvt‖∞
= {hvt(xt)}

Also when Bt = 0,

arg min
x

[‖x− xvt‖∞ : ‖x− xt‖1 ≤ rt] = xt − rthvt(xt)

Then,

g̃vt(xt) =
xt − arg minx[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt]

rt
Definition

=
xt − (xt − rthvt(xt))

rt

= hvt(xt)

∈ ∂fvt(xt)

Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

226 APPENDIX D. ITERATIVE LOCAL VOTING

P(Bt = 1|Ft)
= P(I{∃m 6= m̄t : |xm̄tvt − x

m̄t
t | < |xmvt − xmt |+ rt}|Ft)

=

∫

x∈{x:∃m6=m̄t s.t. |xm̄tvt −x
m̄t
t |<|xmvt−x

m
t |+rt}

hX|Ft(x)dx

=

∫

x∈{x:∃m6=m̄t s.t. |xm̄tvt −x
m̄t
t |<|xmvt−x

m
t |+rt}

hX (x)dx v ind. of history

≤ Crt bounded hX ,X , fixed M

for some C ∈ R <∞. Note that C u 2M2(diameter(X)), based on the volume of the slices around

each dimension. �

Lemma D.3.3 ∀ (p, q) s.t. p > 0, q > 0, 1/p+ 1/q = 1, ‖∇‖x− xv‖p‖q = 1,∀x s.t. ∀m,xm 6= xmv .

Proof. If xm 6= xmv ,∀m :

∇m‖x− xv‖p = ∇m
(∑

m

|xm − xmv |p
)1/p

=
1

p

∇m|xm − xmv |p

(
∑
m |xm − xmv |p)

1−1/p

=
|xm − xmv |p−1 (∇m|xm − xmv |)

‖x− xv‖p−1
p

Then

‖∇‖x− xv‖p‖q = ‖ |x
m − xmv |p−1 (∇m|xm − xmv |)

‖x− xv‖p−1
p

‖q

=
1

‖x− xv‖p−1
p

(∑

m

∣∣|xm − xmv |p−1 (∇m|xm − xmv |)
∣∣q
)1/q

=
1

‖x− xv‖p−1
p

(∑

m

|xm − xmv |(p−1)q

)1/q

=
1

‖x− xv‖p−1
p

‖x− xv‖p/qp (p− 1)q = p

= 1

�

D.3. PROOFS 227

Lemma D.3.4 Suppose that fv(x) ,
∑K
k=1

wkv
‖wv‖2 ‖x

k − xkv‖2, and define the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as defined in (2) for q = 2. Then there exists C ∈ R s.t. ∀n, P(At = 1|Ft) ≤ Crt.

Proof. Let Bt = I{∃k s.t. ‖xkvt − xkt ‖2 ≤ rt}. We show the same two parts for Bt as for the proofs

for Lemma D.3.2.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that, when Bt = 0,

∂mfvt(xt) = ∂m

K∑

k=1

wkv
‖wv‖2

‖xk − xkv‖2

=
wkm

‖wv‖2
xm − xmvt

‖xkmvt − xkmt ‖2
km is subspace containing the mth dimension

Also if Bt = 0, then

arg min
x

[
K∑

k=1

wk

‖wv‖2
‖xk − xkv‖2 : ‖x− xt‖2 ≤ rt

]
= xt + rt

[
. . . ,

wkm

‖wv‖2
xmvt − xm

‖xkmvt − xkmt ‖2
, . . .

]

Then,

g̃vt(xt) =
xt − arg minx[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt]

rt
Definition

∈ ∂fvt(xt)

Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

P(Bt = 1|Ft) = P(‖xvt − xt‖2 ≤ rt|Ft)

=

∫

x∈{x:∃k s.t. ‖xkvt−x
k
t ‖2≤rt}

hX|Ft(x)dx

=

∫

x∈{x:∃k s.t. ‖xkvt−x
k
t ‖2≤rt}

hX (x)dx v drawn independent of history

≤ Cr2
t bounded hX

≤ Crt rt ≤ 1 eventually

for some C ∈ R <∞. Note that C depends on K and M . �

Appendix E

Who is in Your Top Three?

Optimizing Learning in Elections

with Many Candidates

E.1 Empirics additional information

228

E.1. EMPIRICS ADDITIONAL INFORMATION 229

0 200 400 600 800
Voters

10−2

10−1

100

E
m
p
ir
ic
al

E
rr
or

Mechanism

3-Approval

4-Approval Borda

10−1

100

101

L
ea
rn
in
g
ra
te

p
re
d
ic
te
d
E
rr
or

(a) Boston 2016, selecting 4 winners.

0 200 400 600 800
Voters

10−1

E
m
p
ir
ic
al

E
rr
or

Mechanism

1-Approval

2-Approval

4-Approval

6-Approval

7-Approval

Borda

100

L
ea
rn
in
g
ra
te

p
re
d
ic
te
d
E
rr
or

(b) Durham Ward 1, selecting 4 winners. K-
Approval for K ∈ {1, . . . , 7} and the Borda rule all
have the same asymptotic winners, but we omit sev-
eral mechanisms from the plot for visualization ease.

Figure E.1: Average bootstrapped error (fraction of winning subset not identified) by the number of
voters, compared to the errors implied by the (empirically calculated) learning rates. All mechanisms
plotted have the same asymptotic winners.

230 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Name Candidates Votes with complete rankings K-Ranking available

Participatory Budgeting
Boston, 2016 8 4173 4
Durham Ward 1, 2019 21 1637 10
Durham Ward 2, 2019 10 329 10
Durham Ward 3, 2019 12 694 10
Rochester, 2019 22 649 5

PrefLib:
Irish01 12 4259 12
Irish02 9 4810 9
Irish03 14 3166 14
ElectorialReformSociety77 12 1312 12
ElectorialReformSociety13 5 1809 5
Sushi10 10 5000 10
Glasgow05 10 718 10
Glasgow17 9 962 9
Glasgow10 9 818 9
Glasgow18 9 767 9
Glasgow20 9 726 9
Glasgow14 8 1071 8
Glasgow12 8 1040 8
Burlington01 6 2603 6
Burlington02 6 2853 6
APA03 5 11539 5
APA01 5 10978 5
APA11 5 10791 5
APA05 5 10655 5
APA02 5 10623 5
APA04 5 10519 5
APA09 5 10211 5
APA06 5 10177 5
APA07 5 9747 5
APA12 5 9091 5
APA08 5 8532 5
APA10 5 8467 5
Aspen02 5 1183 5

Table E.1: List of election data that we use in Section 6.6. From PrefLib, we use all elections
where full rankings are available and there are at least 5 candidates and 700 voters. Throughout,
we ignore voters who did not submit full rankings (especially with high K-Ranking requested, this
might only be a fraction of the total number of actual votes). Additionally, for the PB elections, we
limit the data to those who submitted votes online rather than through paper ballots.

Sources for the PrefLib datasets are: Mattei and Walsh (2013); O’Neill (2013); Popov et al.
(2014); Regenwetter et al. (2007, 2008).

E.1. EMPIRICS ADDITIONAL INFORMATION 231

1-
A
p
p
r.

2-
A
p
p
r.

3-
A
p
p
r.

4-
A
p
p
r.

5-
A
p
p
r.

6-
A
p
p
r.

7-
A
p
p
r.

8-
A
p
p
r.

9-
A
p
p
r.

B
or
d
a

1-Appr.

2-Appr.

3-Appr.

4-Appr.

5-Appr.

6-Appr.

7-Appr.

8-Appr.

9-Appr.

Borda

0.82

0.70 0.88

0.58 0.76 0.88

0.44 0.61 0.72 0.83

0.40 0.47 0.60 0.73 0.93

0.33 0.40 0.47 0.60 0.80 0.87

0.38 0.46 0.46 0.54 0.69 0.77 0.85

0.62 0.62 0.62 0.62 0.88 1.00 1.00 1.00

0.67 0.79 0.85 0.79 0.89 0.80 0.67 0.69 0.88

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Task of selecting W = 1 winners.

1-
A
p
p
r.

2-
A
p
p
r.

3-
A
p
p
r.

4-
A
p
p
r.

5-
A
p
p
r.

6-
A
p
p
r.

7-
A
p
p
r.

8-
A
p
p
r.

9-
A
p
p
r.

B
or
d
a

1-Appr.

2-Appr.

3-Appr.

4-Appr.

5-Appr.

6-Appr.

7-Appr.

8-Appr.

9-Appr.

Borda

0.86

0.80 0.91

0.75 0.85 0.90

0.74 0.78 0.85 0.91

0.69 0.64 0.71 0.78 0.87

0.64 0.62 0.67 0.71 0.78 0.89

0.62 0.59 0.67 0.69 0.79 0.90 0.90

0.58 0.58 0.67 0.71 0.79 0.88 0.88 0.88

0.73 0.83 0.84 0.86 0.85 0.76 0.73 0.69 0.75

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Task of selecting W = 3 winners.

1-
A
p
p
r.

2-
A
p
p
r.

3-
A
p
p
r.

4-
A
p
p
r.

5-
A
p
p
r.

6-
A
p
p
r.

7-
A
p
p
r.

8-
A
p
p
r.

9-
A
p
p
r.

B
or
d
a

1-Appr.

2-Appr.

3-Appr.

4-Appr.

5-Appr.

6-Appr.

7-Appr.

8-Appr.

9-Appr.

Borda

0.81

0.71 0.88

0.60 0.76 0.85

0.60 0.72 0.79 0.90

0.59 0.64 0.73 0.85 0.92

0.54 0.59 0.66 0.76 0.83 0.90

0.45 0.51 0.57 0.66 0.73 0.80 0.86

0.52 0.56 0.60 0.68 0.72 0.78 0.82 0.91

0.67 0.80 0.83 0.82 0.84 0.83 0.79 0.73 0.80

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Task of ranking all candidates. The values plot-
ted are the average Kendall’s τ rank correlation be-
tween resulting rankings.

Figure E.2: More approximate design invariance plots

232 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Dep. Variable: Best Mechanism R-squared: 0.273
Model: OLS Adj. R-squared: 0.264
Method: Least Squares F-statistic: 42.68
Date: Wed, 12 Jun 2019 Prob (F-statistic): 2.72e-11
Time: 16:17:32 Log-Likelihood: -531.30
No. Observations: 241 AIC: 1071.
Df Residuals: 237 BIC: 1085.
Df Model: 3

coef std err z P>|z| [0.025 0.975]

Intercept -0.1687 0.411 -0.411 0.681 -0.973 0.636
Number Winners 0.9133 0.126 7.229 0.000 0.666 1.161
Number Candidates 0.2662 0.057 4.630 0.000 0.154 0.379
Number Winners:Number Candidates -0.0446 0.008 -5.786 0.000 -0.060 -0.030

Omnibus: 8.524 Durbin-Watson: 1.693
Prob(Omnibus): 0.014 Jarque-Bera (JB): 8.414
Skew: 0.417 Prob(JB): 0.0149
Kurtosis: 2.624 Cond. No. 463.

Table E.2: OLS Regression on the best K to use in K-Approval, by the number of candidates and
desired winners. Standard errors are cluster standard errors, where each cluster is an election in our
dataset.

2 4 6 8 10
Number Candidates

1

2

3

4

5

B
es
t
K

φ

0.5

0.8

0.9

0.95

0.99

0.999

Empirical

(a) For selecting W = 1 winner as number of candidates vary.

2 4 6 8
Number Winners

2

4

6

8

B
es
t
K

(b) For M = 10 candidates as number of win-
ners vary.

Figure E.3: K-Approval rate optimal mechanism for the Mallows model as φ, number of candidates,
and number of winners vary. This plot contains an empirical line, which is calculated using the
coefficients in the regression contained in Table E.2.

E.1. EMPIRICS ADDITIONAL INFORMATION 233

Election Number Winners Mechanism 1 Mechanism 2 Beats Approval rate optimal
Durham Ward 1, 2019 2 3 4 True
Durham Ward 1, 2019 13 8 9 True
Durham Ward 1, 2019 17 6 7 True
Irish03 1 1 3 False
Irish03 10 8 9 False
Irish03 10 8 10 False
Irish01 5 3 4 True
Irish01 5 3 5 False
Irish01 5 3 11 False
Irish01 7 1 5 False
Glasgow05 2 4 5 True
Glasgow05 2 5 6 True
Glasgow10 2 3 4 False
Glasgow10 2 4 6 False
Glasgow10 2 5 6 True
APA08 2 2 3 True

Table E.3: Elections and goals where randomizing between two K-Approval mechanisms produces
leads to faster learning than using either of the mechanisms separately. For several of these cases,
randomization also beats the Approval rate optimal mechanism.

234 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

E.2 Proofs

E.2.1 Asymptotic design-invariance

A setting (M,F) for goal G is asymptotically design-invariant if and only if there exist candidate

tiers O∗ = {C∗1 . . . C∗T } (corresponding to G) s.t. ∀s < t: i ∈ C∗s , j ∈ C∗t =⇒ PrF (σv(i) ≤ k) >

PrF (σv(j) ≤ k), ∀k ∈ {1 . . .M − 1}.

Proof.

∀i ∈ C : E[siv] =

M∑

m=1

β(m)PrF (σv(i) = m)

=

M∑

m=1

β(m)PrF (σv(i) ≤ m)−
M∑

m=2

β(m)PrF (σv(i) < m)

=

M∑

m=1

β(m)PrF (σv(i) ≤ m)−
M−1∑

m=1

β(m+ 1)PrF (σv(i) ≤ m)

= β(M) +

M−1∑

m=1

[β(m)− β(m+ 1)] PrF (σv(i) ≤ m)

=⇒ . By the definition of asymptotically design-invariant,

∃O∗ : ∀β ∈ B, lim
N→∞

O(M,N,F, β,G) = O∗, with probability 1

For this O∗ = {C∗1 , . . . , C∗T }, we show by contradiction that ∀s < t: i ∈ C∗s , j ∈ C∗t =⇒ PrF (σv(i) ≤
k) > PrF (σv(j) ≤ k), ∀k ∈ {1 . . .M − 1}: Suppose ∃i ∈ C∗s , j ∈ C∗t , s < t, k ∈ {1 . . .M − 1} such

that PrF (σv(i) ≤ k) ≤ PrF (σv(j) ≤ k). Then, let

β(m) =





1 m ≤ k
0 m > k

Then, E[siv] = β(M) + β(k)PrF (σv(i) ≤ k) ≤ E[sjv]. Then, with positive probability,

lim
N→∞

O(M,N,F, β,G) 6= O∗

.

⇐= . Suppose there exists such a O∗. Then, ∀β ∈ B = {β : ∀k < ` ∈ 1 . . .M, β(k) ≥ β(`), and ∃k <

E.2. PROOFS 235

`, β(k) > β(`)}: Suppose i ∈ C∗s , j ∈ C∗t , s < t:

E[siv] = β(M) +

M−1∑

m=1

[β(m)− β(m+ 1)] PrF (σv(i) ≤ m)

> E[sjv]

Where the strict inequality follows as ∃m : β(m) − β(m + 1) > 0. Then, for all candidates i ∈
C∗s , j ∈ C∗t , s < t, by the strong law of large numbers limN→∞ sNi > limN→∞ sNj w.p. 1. Thus,

limN→∞O(M,N,F, β,G) = O∗ w.p. 1. �

Remark E.2.1. The following example, with candidates A,B,C,D leads to a disjoint set of 2

winners with 1-Approval and 2 approval, respectively

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5
Rank 1 A A D D B
Rank 2 B B C C C
Rank 3 C C B B D
Rank 4 D D A A A

With 1-Approval, candidates A,D are selected. With 2-Approval, B,C are selected.

E.2.2 Learning rates

Notation tiij(K) is the probability that i is approved but j is not, using K-Approval.

For convenience, we overload the rate function r(·):

� rij(β) is as defined in Proposition 6.4.1, the large deviation rate to learn a pair of candidates

i, j given scoring rule β, for a fixed F that should be clear from context. When a goal G is clear

from context, r(β) is as defined in Proposition 6.4.1, the minimum over rij(β) for candidate

pairs that are in different asymptotic tiers.

� rij(K) is as defined in Proposition 6.4.1, the large deviation rate to learn a pair of candidates

i, j using K-Approval. r(K) is analogous to the previous item when using K approval.

� r(a, b) is the large deviation rate to learn a pair of candidates i, j using approval voting when

the probability that i is approved but j is not is a; and b is the probability that j is approved

but i is not is not.

When which rate function we mean is clear from context, we may drop the argument (·) and just

write rij or r.

Remark E.2.2. r(a, b) > r(c, d) when a > c, b ≤ d, OR a ≥ c, b < d.

236 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Proof. γ(a, b) =
√
ab + 1− a− b is strictly concave in a, b, with maximum at a = b. Thus, holding

either a or b constant and moving the other farther away strictly decreases γ, and thus strictly

increases r. �

Fix scoring rule β ∈ B, voter distribution F , and consider candidates i, j such that si > sj . Then,

the probability of making a mistake in ranking these two candidates after N voters, Pr(σN (i) >

σN (j)), goes to zero with large deviation rate

rij(β) = − inf
z∈R

logEF [exp (z (β(σv(i))− β(σv(j))))]

Further, the following upper bound holds for any N .

Pr(σN (i) > σN (j)) ≤ exp(−rij(β)N)

Proof. Define the following random variable for each voter v ∼ F :

Av = β(σv(i))− β(σv(j))

Then, σN (i) < σN (j) when AN =
∑N
v=1Av > 0, and E[Av] > 0 by supposition. Let

rij(β) = − inf
z∈R

Λ(z)

Λ(z) = log




M∑

m=1

∑

` 6=m

Pr(σv(i) = m,σv(j) = `) exp[z(β(σv(i))− β(σv(j)))]




Then, by basic large deviation bounds (see, e.g. Dembo and Zeitouni (2010)):

− lim
N→∞

1

N
log Pr(AN ≤ 0) = rij(β)

And, applying Chernoff bounds, we get the standard relationship to the large deviation rate,

giving an upper bound for the probability of error directly, including any polynomial factors out

E.2. PROOFS 237

front:

Pr(σN (i) > σN (j)) ≤ Pr(AN ≤ 0)

<

[
inf
z>0

E[exp[−zAv]]
]N

=


 inf
z<0




M∑

m=1

∑

` 6=m

Pr(σv(i) = m,σv(j) = `) exp[z(β(σv(i))− β(σv(j)))]





N

=

[
inf
z<0

exp[Λ(z)]

]N

= exp[−rij(β)N]

Then, Pr(σN (i) < σN (j)) > 1− ε when

exp[−rijN] < ε

⇐⇒ N >
1

rij
log

(
1

ε

)

�

Consider β consistent with K-Approval voting for some fixed K, and candidates i, j such that

si > sj . Then the large deviation rate rij(β) in Proposition 6.4.1 is

rij(K) = − log

(
2
√
tiij(K)tjij(K) + 1− tiij(K)− tjij(K)

)

Where tiij(K) , PrF (σv(i) ≤ K,σv(j) > K), i.e., the probability that a voter approves i but not j.

Proof. With K-approval voting, Aijv becomes

Av =





1 w.p. tiij , i.e., when candidate i approved but j not approved

0 w.p. 1− tiij − tjij , i.e., when both approved, or neither approved

−1 w.p. tjij , i.e., when candidate j approved but i not approved

238 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Then,

rij = − inf
z∈R

Λ(z)

Λ(z) = log




M∑

m=1

∑

6̀=m

Pr(σv(i) = m,σv(j) = `) exp[z(β(σv(i))− β(σv(j)))]




= log
[
tiij exp(z) + tjij exp(−z) + (1− tiij − tjij)

]

The inf(Λ) is attained at z = 1
2 log

tjij
tiij

(Λ is convex in z, and so setting the first derivative to zero

finds the inf). And so

rij = − log

[
tiij exp

(
1

2
log

tjij
tiij

)
+ tjij exp

(
−1

2
log

tjij
tiij

)
+ (1− tiij − tjij)

]

= − log

[
2
√
tiijt

j
ij + 1− tiij − tjij

]

�

Consider goal G and β ∈ B such that ON → O∗. Let QN be the expected number of errors in

the outcome after N voters,
∑
i∈C∗s ,j∈C∗t ,s<t

Pr(σN (i) > σN (j)). Then QN goes to zero with large

deviation rate

r(β) = min
i∈C∗s ,j∈C∗t ,s<t

rij(β)

Further, the following upper bound holds for any N .

QN ≤M2 exp(−rN)

Proof. By the Union bound

QN =
∑

i∈C∗s ,j∈C∗t ,s<t
Pr(σN (i) > σN (j))

≤
∑

i∈C∗s ,j∈C∗t ,s<t
exp[−rijN] Proposition 6.4.1

≤M2 exp[−rN]

Now, using large deviation properties:

E.2. PROOFS 239

By supposition, QN → 0, and so −QN approaches 0 from below. Then,

− lim
N→∞

1

N
log(QN) = − lim

N→∞

1

N
log

∑

i∈C∗s ,j∈C∗t ,s<t
Pr(σN (i) > σN (j))

= − max
i∈C∗s ,j∈C∗t ,s<t

(
lim
N→∞

1

N
log Pr(σN (i) > σN (j))

)
(E.1)

= min
i∈C∗s ,j∈C∗t ,s<t

−
(

lim
N→∞

1

N
log Pr(σN (i) > σN (j))

)

= min
i∈C∗s ,j∈C∗t ,s<t

rij = r

Line (E.1) follows from: ∀aεi ≥ 0, lim supε→0

[
ε log

(∑N
i a

ε
i

)]
= maxNi lim supε→0ε log(aεi). See,

e.g., Lemma 1.2.15 in Dembo and Zeitouni (2010) for a proof of this property.

Thus r is the large deviation rate for QN .

�

E.2.3 Design insights

Theorem 6.5.1. Randomization does not improve the outcome learning rate for any asymptotically

design-invariant noise model F or goal G. For any randomized scoring rule mechanism (B,D),

where B ⊂ B, for any F , G, the scoring rule β∗(k) =
∑
p dpβp(k) satisfies r(β∗) ≥ r(B,D).

Proof. From Proposition 6.4.1, for a given scoring rule β and pair of candidates i, j, the learning

rate is

rij(β) = − inf
z∈R

logEF [exp [z [β(σv(i))− β(σv(j))]]]

= − log inf
z∈R

EF [exp [z [β(σv(i))− β(σv(j))]]]

Similarly, if we use scoring rules {βu}Pu=1, each with probability du, then,

rij({βu}Pu=1) = − log inf
z∈R

EF,{du,βu} [exp [z [βu(σv(i))− βu(σv(j))]]]

= − log inf
z∈R

∑

u

duEF [exp [z [βu(σv(i))− βu(σv(j))]]]

Now, for a single scoring rule β(·), let

γ(β(1), . . . , β(M)) , EF [exp [z [β(σv(i))− β(σv(j))]]]

240 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Below, we show that γ(β(1), . . . , β(M)) is convex in β(k),∀k, z. Then, by convexity, ∀z

P∑

u=1

duγ(βu(1), . . . , βu(M)) ≥ γ
(

P∑

u=1

duβu(1), . . . ,

P∑

u=1

duβu(M)

)

and so

inf
z

[
P∑

u=1

duγ(βu(1), . . . , βu(M))

]
≥ inf

z
γ

(
P∑

u=1

duβu(1), . . . ,

P∑

u=1

duβu(M)

)

The left hand side is equal to the argument inside the − log(·) for the rate function for ran-

domizing between scoring rules {βu}Pu=1, each with probability du, and the right hand side is the

argument inside for the rate function for instead using the single scoring rule β∗ defined as the

convex combination of {βu}Pu=1. Then, as − log(x) is decreasing in x, we have that

rij(β
∗) ≥ rij({βu}Pu=1)

.

As this holds for each pair of candidates i, j simultaneously, we are done.

Proof that γ(β(1), . . . , β(M)) , EF [exp [z [β(σv(i))− β(σv(j))]]] is convex in β(k),∀k We di-

rectly calculate the Hessian of γ and note that it is diagonally dominant and thus positive semidef-

inite. For notational convenience, we let βk = β(k), and σ(k, `) = PrF (σv(i) = k, σv(j) = `). Of

course, σ(k, k) = 0, as we assume each voter has a strict ranking as her preference.

γ(β1, . . . , βM) = EF [exp [z [β(σv(i))− β(σv(j))]]]

=

M∑

k=1

M∑

`=1

σ(k, `) exp [z [βk − β`]]

∂

∂βk
γ(β1, . . . , βM) = z exp [zβk]

∑

` 6=k

exp [−zβ`]σ(k, `)− z exp [−zβk]
∑

` 6=k

exp [zβ`]σ(`, k)

∂2

∂ (βk)
2 γ(β1, . . . , βM) = z2 exp [zβk]

∑

` 6=k

exp [−zβ`]σ(k, `) + z2 exp [−zβk]
∑

` 6=k

exp [zβ`]σ(`, k)

= z2




exp [zβk]

∑

` 6=k

exp [−zβ`]σ(k, `)


+


exp [−zβk]

∑

` 6=k

exp [zβ`]σ(`, k)






∂2

∂βkβ`
γ(β1, . . . , βM) = −z2 [exp [zβk] exp [−zβ`]σ(k, `) + exp [−zβk] exp [zβ`]σ(`, k)]

E.2. PROOFS 241

Thus, the Hessian of γ is diagonally dominant with non-negative diagonal elements: ∀k,

∣∣∣∣∣
∂2γ

∂ (βk)
2

∣∣∣∣∣ ≥
∑

6̀=k

∣∣∣∣
∂2γ

∂βkβ`

∣∣∣∣

and so the Hessian is positive semi-definite. Thus, γ is convex in βk.

�

Theorem 6.5.2. Randomization amongst K-Approval mechanisms does not improve the learning

rate for separating a given pair of candidates i, j for any asymptotically design-invariant noise model

F or goal G. For any randomized K-Approval mechanism (B,D), where βp ∈ B corresponds to p-

Approval, for any F , G, there exists a mechanism K∗ij-Approval such that rij(K
∗
ij) ≥ rij(B,D).

Proof. From Proposition 6.4.1, for k-Approval,

rij(t
i
ij , t

j
ij) = − log

[
2
√
tiijt

j
ij + 1− tiij − tjij

]

Where tiij is the probability that i is approved but j is not.

This rate function is convex in tiij , t
j
ij :

� rij(a, b) = h(g(a, b)), where h(x) = − log(x), g(a, b) = 2
√
ab+ 1− a− b.

� g(a, b) is concave in a, b

� h is convex, and h̃ is non-increasing, where h̃(x) =




h(x) x > 0

∞ x ≤ 0
is the extended value function

of h.

� By convex composition rules, rij(a, b) is convex (see, e.g., page 84 of Boyd and Vandenberghe

(2004)).

The result follows by convexity. Consider a randomization of K-Approval mechanisms for K ∈
{1, . . . ,M − 1}, where K-Approval is used with probability dK .

The resulting approval probabilities are: tiij =
∑M−1
K=1 d

Ktiij(K), tjij =
∑M−1
K=1 d

Ktjij(K). By

convexity:

r

(
M−1∑

K=1

dKtiij(K),

M−1∑

K=1

dKtjij(K)

)
≤
M−1∑

K=1

dKr
(
tiij(K), tjij(K)

)

=

M−1∑

K=1

dKrij(K)

≤ max
K

rij(K)

242 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

We note that, unlike the previous proof, we cannot conclude in general that randomization cannot

improve the rates at which the outcome is learned (in fact, Theorem 6.5.3 establishes otherwise).

That is because while the same β∗ could be said to be rate optimal (compared to the randomized

mechanism) for every pair of candidates simultaneously in that proof, in this proof arg maxK rij(K)

may change based on the pair i, j.

�

Corollary 6.5.1. Randomization among K-Approval mechanisms does not improve the learning

rate for selecting W winners from the Mallows model. For any randomized K-Approval mechanism

(B,D), where βp ∈ B corresponds to p-Approval, for selecting W winners from the Mallows model,

there exists an Approval rate optimal mechanism K∗-Approval such that r(K∗) ≥ r(B,D).

Proof. When selecting W winners out of M candidates, we need to separate candidates 1 . . .W from

candidates W + 1 . . .M . It is easy to show that the pivotal pair, regardless of which K is used in

K-Approval, is W ,W + 1. Applying Theorem 6.5.2, then, randomization cannot help the overall

rate. �

Theorem 6.5.4. Under the Mallows model and the goal of selecting W winners, W -Approval may

not be Approval rate optimal.

Proof. We prove the result by providing an example where it is not optimal. Suppose there are 4

candidates, and we wish to select 3 winners, i.e., separate the first three items from the last item.

Let the items in the reference ranking be, in order, i = 1, 2, 3, 4, respectively.

A Mallows model (with parameter φ = p
1−p , where p is the probability of flipping a given pair of

candidates) can be sampled by repeated insertion (Diaconis, 1988; Lu and Boutilier, 2011): starting

from the first item in the reference ranking, there exists probability p̃ij = φi−j

1+φ1+···+φi−1 at which

item i can be inserted into position j ≤ i, independently of how items above it were inserted, such

that the resulting ranking distribution matches the Mallows model.

Using this repeated insertion property for our example, we can derive p`k, the probability at

which item 3 is in position ` and item 4 is in position k after sampling from a Mallows model with

parameter φ.

In particular, if ` < k, p`k is exactly the probability that item 3 is inserted in position ` and item

4 is inserted in position k. If k > `, however, it is the probability that item 3 is inserted in position

`− 1 and then pushed down when item 4 is inserted in position k. (More generally, it turns out, the

exact probability for an item appearing in a given position in the Mallows model can be calculated

using a simple dynamic program, a fact that does not appear to be documented elsewhere but may

be independently useful. We used this dynamic program to find this given example).

E.2. PROOFS 243

Then, for our example

Ni , 1 + φ1 + · · ·+ φi−1

p`k =




0 φ2

N3

φ2

N4

φ2

N3

φ1

N4

φ2

N3

φ0

N4

φ2

N3

φ3

N4
0 φ1

N3

φ1

N4

φ1

N3

φ0

N4

φ1

N3

φ3

N4

φ1

N3

φ2

N4
0 φ0

N3

φ0

N4

φ0

N3

φ3

N4

φ0

N3

φ2

N4

φ0

N3

φ1

N4
0




`k

=
1

N3N4




0 φ4 φ3 φ2

φ5 0 φ2 φ1

φ4 φ3 0 1

φ3 φ2 φ1 0




`k

Recall that tiij(K) is the probability that i is approved but j is not, using K-Approval. Then, if

we use 3-approval and 2-approval, respectively:

N3 = 1 + φ+ φ2

N4 = 1 + φ+ φ2 + φ3

t334(3) = p14 + p24 + p34 =
φ2 + φ1 + 1

N3N4
=

1

N4

t434(3) = p41 + p42 + p43 =
φ3 + φ2 + φ1

N3N4
=

φ

N4

t334(2) = p14 + p24 + p13 + p23 =
φ2 + φ1 + φ3 + φ2

N3N4

t434(2) = p41 + p42 + p31 + p32 =
φ3 + φ2 + φ4 + φ3

N3N4

Then, recall the rate between items i, j using K approval is

rij(K) = − log

[
2
√
tiij(K)tjij(K) + 1− tiij(K)− tjij(K)

]

r34(3) = − log

[
2

√
1

N4

φ

N4
+ 1− 1

N4
− φ

N4

]

r34(2) = − log


2

√
φ2 + φ1 + φ3 + φ2

N3N4

φ3 + φ2 + φ4 + φ3

N3N4
+ 1− φ2 + φ1 + φ3 + φ2

N3N4
− φ3 + φ2 + φ4 + φ3

N3N4




When there is low noise, e.g., φ = .1 (p = .091):

r34(3) = .5462

r34(2) = .04696 < r34(3)

244 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

But when there is high noise, e.g., φ = .8 (p = .44):

r34(3) = .00378

r34(2) = .00402 > r34(3)

Note that the same example works for selecting 1 winner out of the 4 candidates, as the repeated

insertion model can be run in reverse.

�

Theorem 6.5.3. Randomization among K-Approval mechanisms may improve the learning rate for

the goal of selecting W winners. There exist asymptotically design-invariant settings (M,F) for the

goal of selecting W winners such that a randomized K-Approval mechanism (B,D), where βp ∈ B
corresponds to p-Approval, satisfies

r(B,D) > max
K

r(K)

Proof. We provide two proofs: a numeric example from a real-world election, and a contrived,

constructed example.

Numeric example found in a real election In Durham Ward 1, to select 2 winners, random-

izing between 3 and 4-Approval is better than either individually, even though asymptotically the

mechanisms pick the same set of winners. The critical pair with 2-Approval is with the candidate

asymptotically ranked 1st, and the best item not selected. With 3-Approval, it is with the candidate

asymptotically ranked 2nd, and the same best item not selected.

We will call these items h, i, j (the one not selected) respectively. The respective probabilities of

being selected alone:

E.2. PROOFS 245

thhj(3) = 0.277

thhj(4) = 0.266

tjhj(3) = 0.200

tjhj(4) = 0.188

tiij(3) = 0.255

tiij(4) = 0.295

tjij(3) = 0.160

tjij(4) = 0.217

thhj({3, 4}) = 0.271

tjhj({3, 4}) = 0.194

tiij({3, 4}) = 0.275

tjij({3, 4}) = 0.189

And the resulting rates (using the formula in Proposition 6.4.1) are:

rhj(3) = .00616932

rij(3) = .01114061

rhj(4) = .00677352

rij(4) = .00592327

rhj({3, 4}) = .00642839

rij({3, 4}) = .00815633

r(3) = min(rhj(3), rij(3)) = .00616932

r(4) = min(rhj(4), rij(4)) = .00592327

r({3, 4}) = min(rhj({3, 4}), rij({3, 4})) = .00642839 > max(r(3), r(4))

Thus randomization improves learning.

Constructed example with design invariance We now construct a fully design-invariant ex-

ample with the same flavor as the numeric example, where which pair is critical changes with the

246 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

mechanism.

Consider three candidates h, i, j, such that h is asymptotically in the set of W winners and i, j

are not. Thus, we need the rates at which h is separated from both i, j. Let W = K < L = K + 1.

We prove the result by giving an example where: it is easier to separate h from i using K-

Approval, and easier to separate h from j using L-Approval. Using K-Approval, rhj asymptotically

dominates the rate at which the overall outcome is learned, and using L-Approval, rhi does. Further,

randomizing between the two mechanisms improves the two rates that dominate enough such that

the overall rate is improved.

We need to show the following hold for our example: one of the rates between candidates h and

i, j are smaller than other rates, i.e., dominate the overall learning rate when K and/or L approval

is used; randomization between K and L approval helps the minimum rate between candidates h

and i, j; K ′-Approval (K ′ 6= K,K ′ 6= L) produces a worse rate than either K or L approval; and

this example is asymptotically design-invariant.

We prove each of these conditions in turn after specifying the example.

Recall that tiij(k) is the probability that i is approved but j is not, using k-Approval. Here, we

will use:

tihi(K), tihi(L), thhi(K), thhi(L), tjhj(K), tjhj(L), thhj(K), thhj(L)

. The end row labeled “Total value” then sums up these values.

Example Specification Consider F such according to the following table, where the first column

is the probabilities of the positions in the second set of columns. The third set of columns indicates

whether those set of positions contribute to the given probabilities, for easy accounting.

E.2. PROOFS 247

Positions of h, i, j Contributes to? (Y = Yes)

Row PrF (·) σ(h) σ(i) σ(j) thhi(K) tihi(K) thhi(L) tihi(L) thhj(K) tjhj(K) thhj(L) tjhj(L)

1 a K L+ 1 L Y Y Y
2 a K − 1 K L Y
3 T1 − a− ε K L+ 1 L+ 2 Y Y Y Y
4 T2 − 2a L+ 1 L+ 2 K Y Y
5 T2 − 2a L+ 1 K L+ 2 Y Y
6 a L+ 1 K L Y Y Y
7 a L K − 1 K Y Y
8 a L L+ 1 L+ 2 Y Y
9 a L+ 1 L+ 2 L Y
10 ε See caption Y Y Y Y
11 0 Otherwise

Total value: T1 T2 T1 + a T2 − a T1 + a T2 − a T1 T2

Table E.4: Where the constants such that 0 < ε < a < T2

2 < T2 < T1 < T1 + 2T2 + a = 1, i.e.,
the table describes a valid probability distribution.Row 10 is as follows: The first K candidates (the
asymptotic winners) occupy the first K spots, in an order drawn uniformly at random. Similarly,
The bottom M −K candidates occupy the bottom M −K spots, in an order drawn uniformly at
random. This randomization ensures asymptotically design invariance.

The table does not specify the probabilities of other candidates appearing in any position, so it

is possible that they dominate the learning rate (are hardest to learn). (In particular, if the same,

asymptotically non-winning candidate q is always in position L in the case in row 3, then it may

be hard to separate it from candidate h using L approval). However, we can specify the example

further to ensure this does not happen.

Suppose candidates are indexed by their order in some strict ranking σ∗. Then, candidates

h = K, i = L = K + 1, j = K + 2. Further suppose that candidates in {1 . . .K − 1} always occupy,

in order except in case of row 10, the best positions in a voter’s ranking that are not reserved for

candidates h, i, j in the table above.

For candidates q ∈ {K + 3 . . .M}, we have to be more careful to avoid the case in parenthesis

above. Suppose these Q = M −K + 2 candidates fill up the bottom spots in a voter’s ranking in a

uniform at random order. In other words, they occupy spots L+ 3 . . .M , and the worst spot among

whichever of K,L,L+ 1, L+ 2 is missing in each row in the table above.

Rates between the h and i, j dominate the overall learning rate using K or L approval

We are now ready to show the first claim that learning between candidates h and i, j is hardest

(when using either K or L approval).

By the specification above, candidates in {1 . . .K − 2} are always approved, and so learning

between those candidates and any non-winning candidate is faster than any large deviations rate.

Similarly, candidate K − 1 always is ranked higher than candidates q ∈ {K + 3 . . .M}, and it is

approved alone with high enough probability.

248 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Then, the other candidates who may dominate the learning rate are candidateK−1 (in separation

from i, j), or q ∈ {K + 3 . . .M} (in separation from h). From the above table:

thhq(K) = T1 + a Rows 1,2,3,10

tqhq(K) =
2a

Q
Rows 8,9

thhq(L) =
Q− 1

Q
[T1 − ε] + 3a+ ε Rows 1,2,7,10; and 3,8 w.p.

Q− 1

Q

tqhq(L) =
2T2 − 3a

Q
Rows 4,5,9 w.p.

1

Q

tK−1
(K−1)i(K) = T1 + T2 Rows 1, 3, 4, 8, 9, 10

ti(K−1)i(K) = 2a Rows 2, 7

tK−1
(K−1)j(K) = T1 + T2 + a Rows 1, 3, 5, 6, 8, 9, 10

tj(K−1)j(K) = a Rows 7

tK−1
(K−1)i(L) = T1 + T2 Rows 1, 3, 4, 8, 9, 10

ti(K−1)i(L) = 2a Rows 2, 7

tK−1
(K−1)j(L) = T1 + T2 − 2a Rows 3, 5, 8, 10

tj(K−1)j(L) = 2a Rows 2, 7

Now, suppose 3a > T1

Q and Q > 2. (Both conditions occur for Q large enough). Then, applying

Remark E.2.2 regarding learning rates being larger when the arguments are farther away from one

another (holding one fixed), the resulting rates with these candidates are dominated by (larger than)

the rates between candidates h and i, j, discussed next.

Randomizing improves the minimum rate between candidates h and i, j By Remark E.2.2,

r(T1 + a, T2 − a) > r(T1, T2)

Using K-Approval:

Rate between h, i: rhi(K) = r(T1, T2)

Rate between h, j: rhj(K) = r(T1 + a, T2 − a)

Overall rate: r(K) = min(rhi(K), rhj(K)) = r(T1, T2)

E.2. PROOFS 249

Using L-Approval:

Rate between h, i: rhi(L) = r(T1 + a, T2 − a)

Rate between h, j: rhj(L) = r(T1, T2)

Overall rate: r(K) = min(rhi(L), rhj(L)) = r(T1, T2)

Randomizing – For any 0 < p < 1, eliciting K-Approval with probability p, and L-Approval

otherwise:

Rate between h, i: r(T1 + (1− p)a, T2 − (1− p)a)

Rate between h, j: r(T1 + pa, T2 − pa)

Overall rate: r(K) = r(T1 + φa, T2 − φa) φ = min(p, 1− p)
> r(T1, T2) Remark E.2.2

K ′-Approval (K ′ 6= K,K ′ 6= L) produces a worse rate than either K or L approval For

any K ′ < K − 1, h is approved with probability ε2 < ε, and i, j are never approved. Then, the rate

between h and i, j is − log(1 − ε2) → 0 as ε → 0. Identically, for K ′ ≥ L + 2 = K + 3, both h and

i, j are approved except with some probability ε2 < ε.

For K ′ = K−1, h is approved without i with probability a+ε2 (for some ε2 < ε), and i is approved

without h with probability a. Then, the rate between h and i is − log(2
√

(a+ ε2)a+1−2a−ε2)→ 0

as ε→ 0.

For K ′ = K + 2 = L+ 1, h is approved without i with probability T2 − a+ ε2, and i is approved

without h with probability 0. Then, the rate between them is − log(1− T2 + a− ε2). For T2 small

enough, this is a worse rate than using K or L approval.

The example described is asymptotically design-invariant From the above table, the prob-

ability that candidate c ∈ {1 . . .M} is in position k or better, i.e., σ(c) ≤ k is:

Candidate k < K − 1 K − 1 K L = K + 1 K + 2 K + 3 M > k > K + 3
w ∈ {1 . . .K − 2} > 0 > 1− ε 1 1 1 1 1
K − 1 > 0 1− 2a 1− 2a 1− 2a 1 1 1
K > 0 > a T1 + a T1 + 3a 1 1 1
L = K + 1 0 a T2 < T2 + ε < 1 < 1 < 1
K + 2 0 0 T2 − a < T2 + 3a+ ε < 1 < 1 < 1
q ∈ {K + 3 . . .M} 0 0 2a

Q
T1+2T2−3a−ε

Q < 1 < 1 < 1

250 APPENDIX E. OPTIMIZING ELECTIONS WITH MANY CANDIDATES

Conditions on constants in problem For the above claims to hold, we set conditions on the

constants in the problem. They are

0 < ε < a <
T2

2
< T2 < T1 < T1 + 2T2 + a = 1

1− ε > 2
√
T1T2 + 1− T1 − T2

T1 + 2T2 − 3a− ε
Q

< T1 + 3a

3a >
T1

Q

Q > 2

1− T2 + a− ε > 2
√
T1T2 + 1− T1 − T2

This is a feasible set of constraints: Q can be set large enough to meet conditions 3,4,5 for any

fixed T1, a, T2 that meet condition 1. Condition 2 is weaker than the last condition. That leaves the

last condition along with the first one.

1− T2 + a− ε > 2
√
T1T2 + 1− T1 − T2

⇐⇒ a− ε > 2
√
T1T2 − T1

⇐⇒ T2

2
− 2ε > 2

√
T1T2 − T1 set

T2

2
− ε = a

⇐⇒ T2

2
+ T1 > 2ε+ 2

√
T1T2

which holds for T1 large enough, and T2, ε small enough.

�

Bibliography

Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. The New York City High School Match.

American Economic Review, 95(2):364–367, 2005.

Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan, and David G Robin-

son. Roles for Computing in Social Change. In Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency, pages 252–260, 2020.

Daron Acemoglu, Ali Makhdoumi, Azarakhsh Malekian, and Asuman Ozdaglar. Fast and Slow

Learning From Reviews. Working Paper 24046, National Bureau of Economic Research, November

2017. URL http://www.nber.org/papers/w24046.

Philipp Afèche, Zhe Liu, and Costis Maglaras. Ride-Hailing Networks With Strategic Drivers: The

Impact of Platform Control Capabilities on Performance. SSRN Electronic Journal, 2018. ISSN

1556-5068. doi: 10.2139/ssrn.3120544. URL https://www.ssrn.com/abstract=3120544.

Stéphane Airiau and Ulle Endriss. Iterated Majority Voting. In Proceedings of the 1st International

Conference on Algorithmic Decision Theory, ADT ’09, pages 38–49, Berlin, Heidelberg, 2009.

Springer-Verlag. ISBN 978-3-642-04427-4. doi: 10.1007/978-3-642-04428-1 4. URL http://dx.

doi.org/10.1007/978-3-642-04428-1_4.

Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion Fraud Detection in Online Reviews

by Network Effects. In Seventh International AAAI Conference on Weblogs and Social Media,

2013.

Carlos Alós-Ferrer and Dura-Georg Granić. Two Field Experiments on Approval Voting in Germany.

Social Choice and Welfare, 39(1):171–205, 2012.

Christina Aperjis and Ramesh Johari. Optimal Windows for Aggregating Ratings in Electronic

Marketplaces. Management Science, 56(5):864–880, 2010.

Charles Arthur. Marissa Mayer’s Appointment: What Does It Mean for Yahoo? The Guardian,

July 2012. ISSN 0261-3077. URL https://www.theguardian.com/technology/2012/jul/16/

marissa-mayer-appointment-mean-yahoo.

251

http://www.nber.org/papers/w24046
https://www.ssrn.com/abstract=3120544
http://dx.doi.org/10.1007/978-3-642-04428-1_4
http://dx.doi.org/10.1007/978-3-642-04428-1_4
https://www.theguardian.com/technology/2012/jul/16/marissa-mayer-appointment-mean-yahoo
https://www.theguardian.com/technology/2012/jul/16/marissa-mayer-appointment-mean-yahoo

252 BIBLIOGRAPHY

Arash Asadpour, Daniel Freund, and Garrett J. van Ryzin. Escrow Payments: A Smoother

Driver Pay Mechanism, October 2019. URL https://www.abstractsonline.com/pp8/#!/6818/

presentation/7365.

Itai Ashlagi, Maximilien Burq, Patrick Jaillet, and Amin Saberi. Maximizing Efficiency in Dynamic

Matching Markets. arXiv preprint arXiv:1803.01285, 2018. URL https://arxiv.org/pdf/1803.

01285.pdf.

Baris Ata, Nasser Barjesteh, and Sunil Kumar. Spatial Pricing: An Empirical Analysis of Taxi

Rides in New York City. Working Paper, 2019.

Susan Athey and Michael Luca. Economists (and Economics) in Tech Companies. Journal of

Economic Perspectives, 33(1):209–30, 2019.

Shane Auerbach. Paying Rideshare Drivers for Pickups, October 2019. URL https://simons.

berkeley.edu/talks/tbd-78.

Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Simon Mackenzie, Nicholas Mattei, and Toby

Walsh. Computational Aspects of Multi-Winner Approval Voting. In Proceedings of the 2015

International Conference on Autonomous Agents and Multiagent Systems, pages 107–115. Inter-

national Foundation for Autonomous Agents and Multiagent Systems, 2015.

Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh. Jus-

tified Representation in Approval-Based Committee Voting. Social Choice and Welfare, 48(2):

461–485, 2017.

Jiaru Bai, Kut C. So, Christopher S. Tang, Xiqun (Michael) Chen, and Hai Wang. Coordinating Sup-

ply and Demand on an On-Demand Service Platform With Impatient Customers. Manufacturing

& Service Operations Management, June 2018. doi: 10.1287/msom.2018.0707.

Siddhartha Banerjee, Carlos Riquelme, and Ramesh Johari. Pricing in Ride-Share Platforms: A

Queueing-Theoretic Approach. SSRN Electronic Journal, 2015. ISSN 1556-5068. doi: 10.2139/

ssrn.2568258. URL http://www.ssrn.com/abstract=2568258.

Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and Optimization in Shared

Vehicle Systems: An Approximation Framework. In Proceedings of the 2017 ACM Conference on

Economics and Computation, pages 517–517. ACM, 2017a.

Siddhartha Banerjee, Sreenivas Gollapudi, Kostas Kollias, and Kamesh Munagala. Segmenting Two-

Sided Markets. In Proceedings of the 26th International Conference on World Wide Web, pages

63–72, 2017b.

https://www.abstractsonline.com/pp8/#!/6818/presentation/7365
https://www.abstractsonline.com/pp8/#!/6818/presentation/7365
https://arxiv.org/pdf/1803.01285.pdf
https://arxiv.org/pdf/1803.01285.pdf
https://simons.berkeley.edu/talks/tbd-78
https://simons.berkeley.edu/talks/tbd-78
http://www.ssrn.com/abstract=2568258

BIBLIOGRAPHY 253

Siddhartha Banerjee, Yash Kanoria, and Pengyu Qian. State Dependent Control of Closed Queueing

Networks With Application to Ride-Hailing. March 2018. URL http://arxiv.org/abs/1803.

04959.

Gerdus Benade, Nevo Itzhak, Nisarg Shah, and Ariel D Procaccia. Efficiency and Usability of

Participatory Budgeting Methods. 2018.

Daniel Benjamin, Ori Heffetz, Miles Kimball, and Derek Lougee. The Relationship Between the

Normalized Gradient Addition Mechanism and Quadratic Voting. Public Choice, 172(1):233–263,

July 2017. ISSN 1573-7101. doi: 10.1007/s11127-017-0414-3. URL https://doi.org/10.1007/

s11127-017-0414-3.

Daniel J. Benjamin, Ori Heffetz, Miles S. Kimball, and Nichole Szembrot. Aggregating Local Pref-

erences to Guide Marginal Policy Adjustments. The American Economic Review, 103(3):605–610,

May 2013. ISSN 0002-8282. doi: 10.1257/aer.103.3.605. URL https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3760035/.

Dimitris J. Bertsimas and Garrett van Ryzin. A Stochastic and Dynamic Vehicle Routing Problem

in the Euclidean Plane. Operations Research, 39(4):601–615, August 1991. ISSN 0030-364X,

1526-5463. doi: 10.1287/opre.39.4.601.

Dimitris J. Bertsimas and Garrett van Ryzin. Stochastic and Dynamic Vehicle Routing in the

Euclidean Plane With Multiple Capacitated Vehicles. Operations Research, 41(1):60–76, February

1993. ISSN 0030-364X, 1526-5463. doi: 10.1287/opre.41.1.60.

Omar Besbes and Marco Scarsini. On Information Distortions in Online Ratings. Operations Re-

search, 66(3):597–610, June 2018. ISSN 0030-364X, 1526-5463. doi: 10.1287/opre.2017.1676.

Omar Besbes, Francisco Castro, and Ilan Lobel. Spatial Capacity Planning. SSRN Electronic

Journal, 2018a. ISSN 1556-5068. doi: 10.2139/ssrn.3292651. URL https://www.ssrn.com/

abstract=3292651.

Omar Besbes, Francisco Castro, and Ilan Lobel. Surge Pricing and Its Spatial Supply Response.

SSRN Electronic Journal, 2018b. ISSN 1556-5068. doi: 10.2139/ssrn.3124571. URL https:

//www.ssrn.com/abstract=3124571.

Sushil Bikhchandani. Intermediated Surge Pricing. Journal of Economics & Management Strategy,

29(1):31–50, 2020.

Kostas Bimpikis, Ozan Candogan, and Daniela Saban. Spatial Pricing in Ride-Sharing Networks.

(ID 2868080), November 2016. URL https://papers.ssrn.com/abstract=2868080.

David Blum. Nine Potential Solutions to Abate Grade Inflation at Regionally Accredited Online US

Universities: An Intrinsic Case Study. The Qualitative Report, 22(9):2288–2311, 2017.

http://arxiv.org/abs/1803.04959
http://arxiv.org/abs/1803.04959
https://doi.org/10.1007/s11127-017-0414-3
https://doi.org/10.1007/s11127-017-0414-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760035/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760035/
https://www.ssrn.com/abstract=3292651
https://www.ssrn.com/abstract=3292651
https://www.ssrn.com/abstract=3124571
https://www.ssrn.com/abstract=3124571
https://papers.ssrn.com/abstract=2868080

254 BIBLIOGRAPHY

Gary Bolton, Ben Greiner, and Axel Ockenfels. Engineering Trust: Reciprocity in the Production

of Reputation Information. Management Science, 59(2):265–285, 2013.

George EP Box. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics,

pages 201–236. Elsevier, 1979.

Stephen Boyd and Almir Mutapcic. Subgradient Methods. Lecture Notes of EE364b, Stanford

University, Winter Quarter, 2007.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

Cambridge, UK ; New York, 2004. ISBN 978-0-521-83378-3.

Nicholas Buchholz. Spatial Equilibrium, Search Frictions and Efficient Regulation in the Taxi Indus-

try. 2017. URL https://scholar.princeton.edu/sites/default/files/nbuchholz/files/

taxi_draft.pdf.

Yves Cabannes. Participatory Budgeting: A Significant Contribution to Participatory Democracy.

Environment and Urbanization, 16(1):27–46, April 2004. ISSN 0956-2478, 1746-0301. doi: 10.

1177/095624780401600104. URL http://eau.sagepub.com/content/16/1/27.

Luis Cabral and Ali Hortacsu. The Dynamics of Seller Reputation: Evidence From eBay. The

Journal of Industrial Economics, 58(1):54–78, 2010.

Luis Cabral and Lingfang Li. A Dollar for Your Thoughts: Feedback-Conditional Rebates on eBay.

Management Science, 61(9):2052–2063, 2015.

Gérard P. Cachon, Kaitlin M. Daniels, and Ruben Lobel. The Role of Surge Pricing on a Service

Platform With Self-Scheduling Capacity. Manufacturing & Service Operations Management, 19

(3):368–384, June 2017. ISSN 1523-4614. doi: 10.1287/msom.2017.0618.

Ioannis Caragiannis and Evi Micha. Learning a Ground Truth Ranking Using Noisy Approval

Votes. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

pages 149–155, Melbourne, Australia, August 2017. International Joint Conferences on Artificial

Intelligence Organization. ISBN 978-0-9992411-0-3. doi: 10.24963/ijcai.2017/22. URL https:

//www.ijcai.org/proceedings/2017/22.

Ioannis Caragiannis and Ariel D. Procaccia. Voting Almost Maximizes Social Welfare Despite

Limited Communication. Artificial Intelligence, 175(9):1655–1671, June 2011. ISSN 0004-3702.

doi: 10.1016/j.artint.2011.03.005. URL http://www.sciencedirect.com/science/article/

pii/S0004370211000506.

Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. When Do Noisy Votes Reveal the Truth?

In Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pages 143–160. ACM,

2013.

https://scholar.princeton.edu/sites/default/files/nbuchholz/files/taxi_draft.pdf
https://scholar.princeton.edu/sites/default/files/nbuchholz/files/taxi_draft.pdf
http://eau.sagepub.com/content/16/1/27
https://www.ijcai.org/proceedings/2017/22
https://www.ijcai.org/proceedings/2017/22
http://www.sciencedirect.com/science/article/pii/S0004370211000506
http://www.sciencedirect.com/science/article/pii/S0004370211000506

BIBLIOGRAPHY 255

Ioannis Caragiannis, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah. Subset Selection via

Implicit Utilitarian Voting. Journal of Artificial Intelligence Research, 58:123–152, 2017.

Ioannis Caragiannis, Xenophon Chatzigeorgiou, George A Krimpas, and Alexandros A Voudouris.

Optimizing Positional Scoring Rules for Rank Aggregation. Artificial Intelligence, 267:58–77,

2019.

Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge Pricing Solves the Wild Goose Chase.

pages 241–242. ACM Press, 2017. ISBN 978-1-4503-4527-9. doi: 10.1145/3033274.3085098. URL

http://dl.acm.org/citation.cfm?doid=3033274.3085098.

Yeon-Koo Che and Johannes Horner. Optimal Design for Social Learning. 2015.

Chuansheng Chen, Shin-ying Lee, and Harold W Stevenson. Response Style and Cross-Cultural

Comparisons of Rating Scales Among East Asian and North American Students. Psychological

Science, 6(3):170–175, 1995.

M Keith Chen and Michael Sheldon. Dynamic Pricing in a Labor Market: Surge Pricing and Flexible

Work on the Uber Platform. 2016. doi: 10.1145/2940716.2940798.

Yiwei Chen and Ming Hu. Pricing and Matching With Forward-Looking Buyers and Sellers. SSRN

Scholarly Paper ID 2859864, Social Science Research Network, Rochester, NY, July 2018. URL

https://papers.ssrn.com/abstract=2859864.

Yukun Cheng and Sanming Zhou. A Survey on Approximation Mechanism Design Without Money

for Facility Games. In David Gao, Ning Ruan, and Wenxun Xing, editors, Advances in Global

Optimization, number 95 in Springer Proceedings in Mathematics & Statistics, pages 117–

128. Springer International Publishing, 2015. ISBN 978-3-319-08376-6 978-3-319-08377-3. URL

http://link.springer.com/chapter/10.1007/978-3-319-08377-3_13. DOI: 10.1007/978-3-

319-08377-3 13.

Flavio Chierichetti and Jon Kleinberg. Voting With Limited Information and Many Alternatives.

SIAM Journal on Computing, 43(5):1615–1653, 2014.

Hun Chung and John Duggan. Directional Equilibria. Journal of Theoretical Politics, 30(3):272–305,

July 2018. ISSN 0951-6298. doi: 10.1177/0951629818775515. URL https://doi.org/10.1177/

0951629818775515.

Cody Cook, Rebecca Diamond, Jonathan Hall, John List, and Paul Oyer. The Gender Earnings

Gap in the Gig Economy: Evidence From Over a Million Rideshare Drivers. June 2018. doi:

10.3386/w24732. URL https://www.nber.org/papers/w24732.

http://dl.acm.org/citation.cfm?doid=3033274.3085098
https://papers.ssrn.com/abstract=2859864
http://link.springer.com/chapter/10.1007/978-3-319-08377-3_13
https://doi.org/10.1177/0951629818775515
https://doi.org/10.1177/0951629818775515
https://www.nber.org/papers/w24732

256 BIBLIOGRAPHY

James Cook. Uber’s Internal Charts Show How Its Driver-Rating System

Actually Works, February 2015. URL http://www.businessinsider.com/

leaked-charts-show-how-ubers-driver-rating-system-works-2015-2.

Arthur H Copeland. A Reasonable Social Welfare Function. Technical report, mimeo, 1951. Uni-

versity of Michigan, 1951.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons,

November 2012. ISBN 978-1-118-58577-1.

Judd Cramer and Alan B. Krueger. Disruptive Change in the Taxi Business: The Case of Uber.

American Economic Review, 106(5):177–182, May 2016. ISSN 0002-8282. doi: 10.1257/aer.

p20161002.

J. Pinto da Costa and L. Roque. Limit Distribution for the Weighted Rank Correlation Coefficient,

Rw. REVSTAT-Statistical Journal, 4(3), 2006.

Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. Twenty (Simple) Questions. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

pages 9–21, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4528-6. doi: 10.1145/3055399.

3055422.

Jean C de Borda. Mémoire Sur Les Élections Au Scrutin. 1781.

Mathijs M de Weerdt, Enrico H Gerding, and Sebastian Stein. Minimising the Rank Aggregation

Error. In Proceedings of the 2016 International Conference on Autonomous Agents & Multia-

gent Systems, pages 1375–1376. International Foundation for Autonomous Agents and Multiagent

Systems, 2016.

Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications, volume 38 of Stochas-

tic Modelling and Applied Probability. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN

978-3-642-03311-7. URL http://link.springer.com/10.1007/978-3-642-03311-7.

Dorottya Demszky, Nikhil Garg, Rob Voigt, James Zou, Jesse Shapiro, Matthew Gentzkow, and Dan

Jurafsky. Analyzing Polarization in Social Media: Method and Application to Tweets on 21 Mass

Shootings. In Proceedings of the 2019 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 2970–3005, Minneapolis, Minnesota, June 2019. Association for Computational

Linguistics. doi: 10.18653/v1/N19-1304. URL https://www.aclweb.org/anthology/N19-1304.

Persi Diaconis. Group Representations in Probability and Statistics. Lecture notes-monograph series,

11:i–192, 1988.

http://www.businessinsider.com/leaked-charts-show-how-ubers-driver-rating-system-works-2015-2
http://www.businessinsider.com/leaked-charts-show-how-ubers-driver-rating-system-works-2015-2
http://link.springer.com/10.1007/978-3-642-03311-7
https://www.aclweb.org/anthology/N19-1304

BIBLIOGRAPHY 257

J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual Averaging for Distributed Optimization:

Convergence Analysis and Network Scaling. IEEE Transactions on Automatic Control, 57(3):

592–606, March 2012. ISSN 0018-9286. doi: 10.1109/TAC.2011.2161027.

J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal Rates for Zero-Order Convex

Optimization: The Power of Two Function Evaluations. IEEE Transactions on Information

Theory, 61(5):2788–2806, May 2015. ISSN 0018-9448. doi: 10.1109/TIT.2015.2409256.

Educational Testing Service. TOEFL iBT Writing Sample Responses, 2005. URL http://toefl.

uobabylon.edu.iq/papers/ibt_2014_12148630.pdf.

Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko. Properties of Multiwinner

Voting Rules. Social Choice and Welfare, 48(3):599–632, 2017.

Paul Embrechts, Filip Lindskog, and Alexander Mcneil. Chapter 8 - Modelling Dependence With

Copulas and Applications to Risk Management. In Svetlozar T. Rachev, editor, Handbook of

Heavy Tailed Distributions in Finance, volume 1 of Handbooks in Finance, pages 329–384. North-

Holland, Amsterdam, 2003. URL https://www.sciencedirect.com/science/article/pii/

B9780444508966500108. DOI: 10.1016/B978-044450896-6.50010-8.

Piotr Faliszewski and Nimrod Talmon. A Framework for Approval-Based Budgeting Methods. arXiv

preprint arXiv:1809.04382, 2018.

Guiyun Feng, Guangwen Kong, and Zizhuo Wang. We Are on the Way: Analysis of On-Demand

Ride-Hailing Systems. 2017. URL https://dx.doi.org/10.2139/ssrn.2960991.

Apostolos Filippas, John J Horton, and Joseph M Golden. Reputation Inflation. Working Paper

25857, National Bureau of Economic Research, May 2019. URL http://www.nber.org/papers/

w25857.

Peter C Fishburn. Axioms for Approval Voting: Direct Proof. Journal of Economic Theory, 19(1):

180–185, 1978.

Peter C. Fishburn and William V. Gehrlein. Borda’s Rule, Positional Voting, and Condorcet’s Simple

Majority Principle. Public Choice, 28(1):79–88, December 1976. ISSN 0048-5829, 1573-7101. doi:

10.1007/BF01718459. URL http://link.springer.com/10.1007/BF01718459.

James Fishkin, Nikhil Garg, Lodewijk Gelauff, Ashish Goel, Kamesh Munagala, Sukolsak Sakshu-

wong, Alice Siu, and Sravya Yandamuri. Deliberative Democracy with the Online Deliberation

Platform. Technical report, October 2019.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online Convex Optimiza-

tion in the Bandit Setting: Gradient Descent Without a Gradient. In Proceedings of the Sixteenth

http://toefl.uobabylon.edu.iq/papers/ibt_2014_12148630.pdf
http://toefl.uobabylon.edu.iq/papers/ibt_2014_12148630.pdf
https://www.sciencedirect.com/science/article/pii/B9780444508966500108
https://www.sciencedirect.com/science/article/pii/B9780444508966500108
https://dx.doi.org/10.2139/ssrn.2960991
http://www.nber.org/papers/w25857
http://www.nber.org/papers/w25857
http://link.springer.com/10.1007/BF01718459

258 BIBLIOGRAPHY

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 385–394, Philadelphia,

PA, USA, 2005. Society for Industrial and Applied Mathematics. ISBN 978-0-89871-585-9. URL

http://dl.acm.org/citation.cfm?id=1070432.1070486.

Andrey Fradkin, Elena Grewal, and David Holtz. The Determinants of Online Review Informative-

ness: Evidence From Field Experiments on AirBnb. 2018.

Rupert Freeman, David M Pennock, Dominik Peters, and Jennifer Wortman Vaughan. Truthful

Aggregation of Budget Proposals. arXiv preprint arXiv:1905.00457, 2019.

Snehalkumar (Neil) S. Gaikwad, Mark Whiting, Karolina Ziulkoski, Alipta Ballav, et al. Boomerang:

Rebounding the Consequences of Reputation Feedback on Crowdsourcing Platforms. pages 625–

637. ACM Press, 2016.

Nikhil Garg and Ramesh Johari. Designing Optimal Binary Rating Systems. In Proceedings of

the 22nd International Conference on Artificial Intelligence and Statistics, 2019a. URL http:

//proceedings.mlr.press/v89/garg19a.html.

Nikhil Garg and Ramesh Johari. Designing Informative Rating Systems: Evidence From An Online

Labor Market. 2019b. URL https://arxiv.org/abs/1810.13028.

Nikhil Garg and Ramesh Johari. Designing Informative Rating Systems: Evidence From An Online

Labor Market. In Proceedings of the 21st ACM Conference on Economics and Computation (EC

’20), July 2020.

Nikhil Garg and Hamid Nazerzadeh. Driver Surge Pricing. 2019. URL https://papers.ssrn.com/

sol3/papers.cfm?abstract_id=3390346.

Nikhil Garg and Hamid Nazerzadeh. Driver Surge Pricing. In Proceedings of the 21st ACM Confer-

ence on Economics and Computation (EC ’20), July 2020.

Nikhil Garg, Vijay Kamble, Ashish Goel, David Marn, and Kamesh Munagala. Collaborative Opti-

mization for Collective Decision-making in Continuous Spaces. In Proceedings of the 26th Inter-

national Conference on World Wide Web, pages 617–626, 2017.

Nikhil Garg, Ashish Goel, and Benjamin Plaut. Markets for Public Decision-Making. 2018a.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. Word Embeddings Quantify 100

Years of Gender and Ethnic Stereotypes. In Proceedings of the National Academy of Sciences

(PNAS), 2018b.

Nikhil Garg, Lodewijk L Gelauff, Sukolsak Sakshuwong, and Ashish Goel. Who Is In Your Top

Three? Optimizing Learning In Elections With Many Candidates. In Proceedings of the AAAI

Conference on Human Computation and Crowdsourcing, volume 7, pages 22–31, 2019a.

http://dl.acm.org/citation.cfm?id=1070432.1070486
http://proceedings.mlr.press/v89/garg19a.html
http://proceedings.mlr.press/v89/garg19a.html
https://arxiv.org/abs/1810.13028
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3390346
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3390346

BIBLIOGRAPHY 259

Nikhil Garg, Vijay Kamble, Ashish Goel, David Marn, and Kamesh Munagala. Iterative Local

Voting for Collective Decision-Making in Continuous Spaces. Journal of Artificial Intelligence

Research, 64(1):315–355, January 2019b. ISSN 1076-9757. doi: 10.1613/jair.1.11358. URL https:

//doi.org/10.1613/jair.1.11358.

Lodewijk Gelauff, Sukolsak Sakshuwong, Nikhil Garg, and Ashish Goel. Comparing Voting Methods

for Budget Decisions on the ASSU Ballot. Technical report, 2018.

Hollie Russon Gilman. Transformative Deliberations: Participatory Budgeting in the United States.

Journal of Public Deliberation, 8(2), 2012. URL http://search.proquest.com/openview/

4c3b7fd3ae888f483cacd031a749131e/1?pq-origsite=gscholar.

Scott Gines. Tastes for True Talent: How Professional Baseball Scouts Define Talent and Decide

Who Gets to Play. 2017.

Amihai Glazer and Refael Hassin. The Economics of Cheating in the Taxi Market. Transportation

Research Part A, 17(1):25–31, 1983.

Peter Glynn and Sandeep Juneja. A Large Deviations Perspective on Ordinal Optimization. In

Simulation Conference, 2004. Proceedings of the 2004 Winter, volume 1. IEEE, 2004.

Ashish Goel, Anilesh K. Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aitamurto. Knapsack

Voting: Voting Mechanisms for Participatory Budgeting. 2016. URL http://web.stanford.

edu/~anilesh/publications/knapsack_voting_full.pdf.

Ashish Goel, Anilesh K. Krishnaswamy, and Kamesh Munagala. Metric Distortion of Social Choice

Rules: Lower Bounds and Fairness Properties. In Proceedings of the 2017 ACM Conference on

Economics and Computation, EC ’17, pages 287–304, New York, NY, USA, 2017. ACM. ISBN 978-

1-4503-4527-9. doi: 10.1145/3033274.3085138. URL http://doi.acm.org/10.1145/3033274.

3085138.

Harish Guda and Upender Subramanian. Your Uber Is Arriving: Managing On-Demand Workers

Through Surge Pricing, Forecast Communication, and Worker Incentives. Management Science,

65(5):1995–2014, 2019. doi: 10.1287/mnsc.2018.3050. URL https://doi.org/10.1287/mnsc.

2018.3050.

John Guiver and Edward Snelson. Bayesian Inference for Plackett-Luce Ranking Models. In Pro-

ceedings of the 26th Annual International Conference on Machine Learning, pages 377–384. ACM,

2009.

Jonathan V. Hall, Cory Kendrick, and Chris Nosko. The Effects of Uber’s

Surge Pricing: A Case Study. 2015. URL https://eng.uber.com/research/

the-effects-of-ubers-surge-pricing-a-case-study/.

https://doi.org/10.1613/jair.1.11358
https://doi.org/10.1613/jair.1.11358
http://search.proquest.com/openview/4c3b7fd3ae888f483cacd031a749131e/1?pq-origsite=gscholar
http://search.proquest.com/openview/4c3b7fd3ae888f483cacd031a749131e/1?pq-origsite=gscholar
http://web.stanford.edu/~anilesh/publications/knapsack_voting_full.pdf
http://web.stanford.edu/~anilesh/publications/knapsack_voting_full.pdf
http://doi.acm.org/10.1145/3033274.3085138
http://doi.acm.org/10.1145/3033274.3085138
https://doi.org/10.1287/mnsc.2018.3050
https://doi.org/10.1287/mnsc.2018.3050
https://eng.uber.com/research/the-effects-of-ubers-surge-pricing-a-case-study/
https://eng.uber.com/research/the-effects-of-ubers-surge-pricing-a-case-study/

260 BIBLIOGRAPHY

Jonathan V. Hall, John J. Horton, and Daniel T. Knoepfle. Labor Market Equi-

libration: Evidence From Uber. 2017. URL https://eng.uber.com/research/

labor-market-equilibration-evidence-from-uber/.

Takeshi Hamamura, Steven J. Heine, and Delroy L. Paulhus. Cultural Differences in Response Styles:

The Role of Dialectical Thinking. Personality and Individual Differences, 44(4):932–942, March

2008. ISSN 01918869. doi: 10.1016/j.paid.2007.10.034. URL http://linkinghub.elsevier.

com/retrieve/pii/S0191886907003820.

Avinatan Hassidim, Assaf Romm, and Ran I Shorrer. “Strategic” Behavior in a Strategy-Proof

Environment. In Proceedings of the 2016 ACM Conference on Economics and Computation,

pages 763–764, 2016.

Fred Hicks, Lee Valentine, John Morrow, and Ian McDonald. Choosing Natural Adjective Ladders,

2000. URL http://www.mcdonald.me.uk/storytelling/lichert_article.htm.

Zoë Hitzig. Bridging the ‘Normative Gap’: Mechanism Design and Social Justice. Available at SSRN

3242882, 2018.

Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha

Makhija, and Christos Faloutsos. Birdnest: Bayesian Inference for Ratings-Fraud Detection. In

Proceedings of the 2016 SIAM International Conference on Data Mining, pages 495–503. SIAM,

2016.

Ming Hu and Yun Zhou. Dynamic Type Matching. Rotman School of Management Working Paper,

(2592622), 2018.

Nan Hu, Jie Zhang, and Paul A Pavlou. Overcoming the J-Shaped Distribution of Product Reviews.

Communications of the ACM, 52(10):144–147, 2009.

Nan Hu, Ling Liu, and Vallabh Sambamurthy. Fraud Detection in Online Consumer Reviews.

Decision Support Systems, 50(3):614–626, 2011.

Aanund Hylland and Richard Zeckhauser. A Mechanism for Selecting Public Goods When Prefer-

ences Must Be Elicited. 1980.

Bar Ifrach, Costis Maglaras, Marco Scarsini, and Anna Zseleva. Bayesian Social Learning From Con-

sumer Reviews. SSRN Scholarly Paper ID 2293158, Social Science Research Network, Rochester,

NY, December 2017.

Nicole Immorlica. The Design of Everyday Markets. In The Future of Economic Design, pages

517–522. Springer, 2019.

https://eng.uber.com/research/labor-market-equilibration-evidence-from-uber/
https://eng.uber.com/research/labor-market-equilibration-evidence-from-uber/
http://linkinghub.elsevier.com/retrieve/pii/S0191886907003820
http://linkinghub.elsevier.com/retrieve/pii/S0191886907003820
http://www.mcdonald.me.uk/storytelling/lichert_article.htm

BIBLIOGRAPHY 261

Nicole Immorlica, Brendan Lucier, and Brian Rogers. Emergence of Cooperation in Anonymous

Social Networks Through Social Capital. In Proceedings of the 11th ACM Conference on Electronic

Commerce, 2010.

Kevin G. Jamieson, Robert Nowak, and Ben Recht. Query Complexity of Derivative-Free Optimiza-

tion. In Advances in Neural Information Processing Systems, pages 2672–2680, 2012. URL http:

//papers.nips.cc/paper/4509-query-complexity-of-derivative-free-optimization.

Libin Jiang and Jean Walrand. Scheduling and Congestion Control for Wireless and Process-

ing Networks. Synthesis Lectures on Communication Networks, 3(1):1–156, January 2010.

ISSN 1935-4185, 1935-4193. doi: 10.2200/S00270ED1V01Y201008CNT006. URL http://www.

morganclaypool.com/doi/abs/10.2200/S00270ED1V01Y201008CNT006.

Ramesh Johari, Vijay Kamble, and Yash Kanoria. Matching While Learning. In Proceedings of

the 2017 ACM Conference on Economics and Computation, EC ’17, pages 119–119, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-4527-9. doi: 10.1145/3033274.3084095. event-place:

Cambridge, Massachusetts, USA.

Valen E Johnson. Grade Inflation: A Crisis in College Education. Springer Science & Business

Media, 2006.

Vijay Kamble. Revenue Management on an On-Demand Service Platform. Operations Research

Letters, 47(5):377–385, 2019.

Yash Kanoria and Pengyu Qian. Near Optimal Control of a Ride-Hailing Platform via Mirror

Backpressure. March 2019. URL http://arxiv.org/abs/1903.02764.

Sumeet Katariya, Branislav Kveton, Csaba Szepesvári, and Zheng Wen. DCM Bandits: Learning

to Rank with Multiple Clicks. arXiv:1602.03146 [cs, stat], February 2016. URL http://arxiv.

org/abs/1602.03146. arXiv: 1602.03146.

John G Kemeny. Mathematics Without Numbers. Daedalus, 88(4):577–591, 1959.

Alan J Klockars and Midori Yamagishi. The Influence of Labels and Positions in Rating Scales.

Journal of Educational Measurement, 25(2):85–96, 1988.

Noi Sian Koh, Nan Hu, and Eric K Clemons. Do Online Reviews Reflect a Product’s True Per-

ceived Quality? An Investigation of Online Movie Reviews Across Cultures. Electronic Commerce

Research and Applications, 9(5):374–385, 2010.

Anurag Komanduri, Zeina Wafa, Kimon Proussaloglou, and Simon Jacobs. Assessing the Impact

of App-Based Ride Share Systems in an Urban Context: Findings From Austin. Transportation

Research Record, 2672(7):34–46, 2018.

http://papers.nips.cc/paper/4509-query-complexity-of-derivative-free-optimization
http://papers.nips.cc/paper/4509-query-complexity-of-derivative-free-optimization
http://www.morganclaypool.com/doi/abs/10.2200/S00270ED1V01Y201008CNT006
http://www.morganclaypool.com/doi/abs/10.2200/S00270ED1V01Y201008CNT006
http://arxiv.org/abs/1903.02764
http://arxiv.org/abs/1602.03146
http://arxiv.org/abs/1602.03146

262 BIBLIOGRAPHY

Nikita Korolko, Dawn Woodard, Chiwei Yan, and Helin Zhu. Dynamic Pricing and Matching in

Ride-Hailing Platforms. SSRN Electronic Journal, page 40, 2018. ISSN 1556-5068. doi: 10.2139/

ssrn.3258234. URL https://www.ssrn.com/abstract=3258234.

Jon A Krosnick. Survey Research. Annual Review of Psychology, 50(1):537–567, 1999.

Laura W Lackey and W JACK Lackey. Grade Inflation: Potential Causes and Solutions. Interna-

tional Journal of Engineering Education, 22(1):130, 2006.

Martin Lackner and Piotr Skowron. Consistent Approval-Based Multi-Winner Rules. In Proceedings

of the 2018 ACM Conference on Economics and Computation, EC ’18, pages 47–48, New York,

NY, USA, 2018a. ACM. ISBN 978-1-4503-5829-3. doi: 10.1145/3219166.3219170. URL http:

//doi.acm.org/10.1145/3219166.3219170.

Martin Lackner and Piotr Skowron. A Quantitative Analysis of Multi-Winner Rules. arXiv preprint

arXiv:1801.01527, 2018b.

Steven P. Lalley and E. Glen Weyl. Quadratic Voting. SSRN Scholarly Paper ID 2003531, Social

Science Research Network, Rochester, NY, December 2015. URL http://papers.ssrn.com/

abstract=2003531.

Richard N Landers and Tara S Behrend. An Inconvenient Truth: Arbitrary Distinctions Between

Organizational, Mechanical Turk, and Other Convenience Samples. Industrial and Organizational

Psychology, 8(2):142–164, 2015.

David Timothy Lee, Ashish Goel, Tanja Aitamurto, and Helene Landemore. Crowdsourcing for

Participatory Democracies: Efficient Elicitation of Social Choice Functions. In Second AAAI

Conference on Human Computation and Crowdsourcing, September 2014. URL https://www.

aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8952.

Yanzhe Lei and Stefanus Jasin. Real-Time Dynamic Pricing for Revenue Management With Reusable

Resources and Deterministic Service Time Requirements. 2016.

Lingfang Li and Erte Xiao. Money Talks: Rebate Mechanisms in Reputation System Design. Man-

agement Science, 60(8):2054–2072, 2014.

Alice Lu, Peter I. Frazier, and Oren Kislev. Surge Pricing Moves Uber’s Driver-Partners. In Pro-

ceedings of the 2018 ACM Conference on Economics and Computation, EC ’18, pages 3–3, New

York, NY, USA, 2018. ACM. ISBN 978-1-4503-5829-3. doi: 10.1145/3219166.3219192.

Tyler Lu and Craig Boutilier. Learning Mallows Models With Pairwise Preferences. In Proceedings of

the 28th International Conference on International Conference on Machine Learning, ICML’11,

pages 145–152, USA, 2011. Omnipress. ISBN 978-1-4503-0619-5. URL http://dl.acm.org/

citation.cfm?id=3104482.3104501.

https://www.ssrn.com/abstract=3258234
http://doi.acm.org/10.1145/3219166.3219170
http://doi.acm.org/10.1145/3219166.3219170
http://papers.ssrn.com/abstract=2003531
http://papers.ssrn.com/abstract=2003531
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8952
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8952
http://dl.acm.org/citation.cfm?id=3104482.3104501
http://dl.acm.org/citation.cfm?id=3104482.3104501

BIBLIOGRAPHY 263

Michael Luca and Max Bazerman. The Power of Experiments: Decision Making in a Data-Driven

World . MIT Press, 2020.

Michael Luca and Georgios Zervas. Fake It Till You Make It: Reputation, Competition, and Yelp

Review Fraud. Management Science, 62(12):3412–3427, 2016.

Hongyao Ma, Fei Fang, and David C. Parkes. Spatio-Temporal Pricing for Ridesharing Platforms.

January 2018. URL http://arxiv.org/abs/1801.04015.

Francis Maes, Louis Wehenkel, and Damien Ernst. Automatic Discovery of Ranking Formulas for

Playing With Multi-Armed Bandits. In Recent Advances in Reinforcement Learning, Lecture

Notes in Computer Science, pages 5–17. Springer, Berlin, Heidelberg, September 2011. ISBN

978-3-642-29945-2 978-3-642-29946-9. doi: 10.1007/978-3-642-29946-9 5. URL https://link.

springer.com/chapter/10.1007/978-3-642-29946-9_5.

Colin L Mallows. Non-Null Ranking Models. I. Biometrika, 44(1/2):114–130, 1957.

Marie Jean Antoine marquis de Condorcet. Essai Sur l’Application De l’Analyse a La Probabilite

Des Decisions: Rendues a La Pluralite De Voix. De l’Imprimerie royale, 1785.

Nicholas Mattei and Toby Walsh. PrefLib: A Library of Preference Data http://preflib.org. In

Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT 2013),

Lecture Notes in Artificial Intelligence. Springer, 2013.

Lucas Maystre and Matthias Grossglauser. Fast and Accurate Inference of Plackett–Luce Models.

In Advances in Neural Information Processing Systems, pages 172–180. 2015.

Nina Mazar, On Amir, and Dan Ariely. The Dishonesty of Honest People: A Theory of Self-Concept

Maintenance. Journal of Marketing Research, 45(6):633–644, 2008.

Patrice McDermott. Building Open Government. Government Information Quarterly, 27(4):

401–413, October 2010. ISSN 0740-624X. doi: 10.1016/j.giq.2010.07.002. URL http://www.

sciencedirect.com/science/article/pii/S0740624X10000663.

Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nicholas R. Jennings. Convergence to

Equilibria in Plurality Voting. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial

Intelligence, volume 10 of AAAI’10, page 823–828. AAAI Press, 2010.

H. Moulin. On Strategy-Proofness and Single Peakedness. Public Choice, 35(4):437–455, 1980. ISSN

0048-5829. URL http://www.jstor.org/stable/30023824.

Roger B. Nelsen. An Introduction to Copulas. Springer Science & Business Media, June 2007. ISBN

978-0-387-28678-5.

http://arxiv.org/abs/1801.04015
https://link.springer.com/chapter/10.1007/978-3-642-29946-9_5
https://link.springer.com/chapter/10.1007/978-3-642-29946-9_5
http://www.sciencedirect.com/science/article/pii/S0740624X10000663
http://www.sciencedirect.com/science/article/pii/S0740624X10000663
http://www.jstor.org/stable/30023824

264 BIBLIOGRAPHY

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust Stochastic

Approximation Approach to Stochastic Programming. SIAM Journal on Optimization, 19(4):

1574–1609, 2009.

Chris Nosko and Steven Tadelis. The Limits of Reputation in Platform Markets: An Empirical

Analysis and Field Experiment. Working Paper, National Bureau of Economic Research, 2015.

Jeffery O’Neill. Open STV, 2013. URL www.OpenSTV.org.

Erhun Özkan. Joint Pricing and Matching in Ridesharing Systems. 2018.

Erhun Özkan and Amy Ward. Dynamic Matching for Real-Time Ridesharing. SSRN Electronic Jour-

nal, 2016. ISSN 1556-5068. doi: 10.2139/ssrn.2844451. URL http://www.ssrn.com/abstract=

2844451.

Yiangos Papanastasiou, Kostas Bimpikis, and Nicos Savva. Crowdsourcing Exploration. Manage-

ment Science, 64(4):1727–1746, April 2017. ISSN 0025-1909. doi: 10.1287/mnsc.2016.2697.

A. Parasuraman, Dhruv Grewal, and R. Krishnan. Marketing Research. Cengage Learning, 2006.

ISBN 978-0-618-66063-6.

Sergey V Popov, Anna Popova, and Michel Regenwetter. Consensus in Organizations: Hunting for

the Social Choice Conundrum in APA Elections. Decision, 1(2):123, 2014.

Canice Prendergast. The Allocation of Food to Food Banks. EAI Endorsed Trans. Serious Games,

3(10):e4, 2016.

Ariel D. Procaccia and Jeffrey S. Rosenschein. The Distortion of Cardinal Preferences in Voting. In

International Workshop on Cooperative Information Agents, pages 317–331. Springer, 2006. URL

http://link.springer.com/chapter/10.1007/11839354_23.

Ariel D Procaccia and Nisarg Shah. Is Approval Voting Optimal Given Approval Votes? In

Advances in Neural Information Processing Systems 28, pages 1801–1809, 2015. URL http:

//papers.nips.cc/paper/5884-is-approval-voting-optimal-given-approval-votes.pdf.

Ariel D. Procaccia and Moshe Tennenholtz. Approximate Mechanism Design Without Money. In

Proceedings of the 10th ACM Conference on Electronic Commerce, EC ’09, pages 177–186, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-458-4. doi: 10.1145/1566374.1566401. URL

http://doi.acm.org/10.1145/1566374.1566401.

Public Agenda. Public Spending By The People: Participatory Budgeting in the United

States and Canada in 2014–15. Technical report, The Yankelovich Center for Public Judg-

ment, May 2016. URL https://www.publicagenda.org/files/PublicSpendingByThePeople_

PublicAgenda_2016.pdf.

www.OpenSTV.org
http://www.ssrn.com/abstract=2844451
http://www.ssrn.com/abstract=2844451
http://link.springer.com/chapter/10.1007/11839354_23
http://papers.nips.cc/paper/5884-is-approval-voting-optimal-given-approval-votes.pdf
http://papers.nips.cc/paper/5884-is-approval-voting-optimal-given-approval-votes.pdf
http://doi.acm.org/10.1145/1566374.1566401
https://www.publicagenda.org/files/PublicSpendingByThePeople_PublicAgenda_2016.pdf
https://www.publicagenda.org/files/PublicSpendingByThePeople_PublicAgenda_2016.pdf

BIBLIOGRAPHY 265

David Quarfoot, Douglas von Kohorn, Kevin Slavin, Rory Sutherland, David Goldstein, and Ellen

Konar. Quadratic Voting in the Wild: Real People, Real Votes. Public Choice, 172(1):283–303,

July 2017. ISSN 1573-7101. doi: 10.1007/s11127-017-0416-1. URL https://doi.org/10.1007/

s11127-017-0416-1.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning Diverse Rankings With Multi-

Armed Bandits. In Proceedings of the 25th International Conference on Machine Learning, pages

784–791. ACM, 2008.

Shiva Rajaraman. Five Stars Dominate Ratings, September 2009. URL https://youtube.

googleblog.com/2009/09/five-stars-dominate-ratings.html.

Thomas C. Ratliff. Some Startling Inconsistencies When Electing Committees. Social Choice and

Welfare, 21(3):433–454, December 2003. ISSN 1432-217X. doi: 10.1007/s00355-003-0209-y. URL

https://doi.org/10.1007/s00355-003-0209-y.

Michel Regenwetter, Aeri Kim, Arthur Kantor, and Moon-Ho R Ho. The Unexpected Empirical

Consensus Among Consensus Methods. Psychological Science, 18(7):629–635, 2007.

Michel Regenwetter, Bernard Grofman, Anna Popova, William Messner, Clintin P Davis-Stober, and

Daniel R Cavagnaro. Behavioural Social Choice: A Status Report. Philosophical Transactions of

the Royal Society B: Biological Sciences, 364(1518):833–843, 2008.

Ben Reiter. Astroball: The New Way to Win It All. Crown Archetype, 2018.

RideAustin. Driver Rates, 2019. URL http://www.rideaustin.com/drivers/rates.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of

Mathematical Statistics, 22(3):400–407, September 1951. ISSN 0003-4851, 2168-8990. doi:

10.1214/aoms/1177729586. URL http://projecteuclid.org/euclid.aoms/1177729586.

Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Kidney Exchange. The Quarterly Journal

of Economics, 119(2):457–488, 05 2004. ISSN 0033-5533. doi: 10.1162/0033553041382157. URL

https://doi.org/10.1162/0033553041382157.

Matthew Salganik. Bit by Bit: Social Research in the Digital Age. Princeton University Press, 2019.

Anwar Shah, editor. Participatory Budgeting. Public Sector Governance and Accountability Se-

ries. World Bank, Washington, D.C, 2007. ISBN 978-0-8213-6923-4 978-0-8213-6924-1. OCLC:

ocm71947871.

Adnan Shaout and Mohamed K Yousif. Performance Evaluation–Methods and Techniques Survey.

International Journal of Computer and Information Technology, 3(5):966–979, 2014.

https://doi.org/10.1007/s11127-017-0416-1
https://doi.org/10.1007/s11127-017-0416-1
https://youtube.googleblog.com/2009/09/five-stars-dominate-ratings.html
https://youtube.googleblog.com/2009/09/five-stars-dominate-ratings.html
https://doi.org/10.1007/s00355-003-0209-y
http://www.rideaustin.com/drivers/rates
http://projecteuclid.org/euclid.aoms/1177729586
https://doi.org/10.1162/0033553041382157

266 BIBLIOGRAPHY

Naum Z. Shor. Nondifferentiable Optimization and Polynomial Problems, volume 24 of Nonconvex

Optimization and Its Applications. Springer US, Boston, MA, 1998. ISBN 978-1-4419-4792-5 978-

1-4757-6015-6. doi: 10.1007/978-1-4757-6015-6. URL http://link.springer.com/10.1007/

978-1-4757-6015-6.

Yves Sintomer, Carsten Herzberg, and Anja Rocke. From Porto Alegre to Europe: Potentials

and Limitations of Participatory Budgeting. International Journal of Urban and Regional Re-

search, 32(1):164–178, 2008. URL http://www.cpa.zju.edu.cn/participatory_budgeting_

conference/english_articles/paper2.pdf.

Mike Staring. Two Paradoxes of Committee Elections. Mathematics Magazine, 59(3):158–159, 1986.

Volker Strassen. The Existence of Probability Measures With Given Marginals. The Annals of

Mathematical Statistics, 36(2):423–439, April 1965. ISSN 0003-4851, 2168-8990. doi: 10.1214/

aoms/1177700153. URL https://projecteuclid.org/euclid.aoms/1177700153.

Steven Tadelis. Reputation and Feedback Systems in Online Platform Markets. Annual Review of

Economics, 8:321–340, 2016.

Agostino Tarsitano. Comparing the Effectiveness of Rank Correlation Statistics. Working Papers,

Universita della Calabria, Dipartimento di Economia e Statistica, pages 1–25, 2009.

Maria Tataru and Vincent Merlin. On the Relationship of the Condorcet Winner and Positional

Voting Rules. Mathematical Social Sciences, 34(1):81–90, August 1997. ISSN 0165-4896. doi: 10.

1016/S0165-4896(97)00005-X. URL http://www.sciencedirect.com/science/article/pii/

S016548969700005X.

T. Nicolaus Tideman and Florenz Plassmann. Efficient Collective Decision-Making, Marginal Cost

Pricing, And Quadratic Voting. SSRN Scholarly Paper ID 2836610, Social Science Research

Network, Rochester, NY, August 2016. URL https://papers.ssrn.com/abstract=2836610.

Uber. Community Guidelines, 2019a. URL https://www.uber.com/legal/

community-guidelines/us-en/.

Uber. Dependable Earnings, 2019b. URL https://www.uber.com/drive/resources/

dependable-earnings/.

Uber. New Driver Surge, 2019c. URL https://www.uber.com/blog/

your-questions-about-the-new-surge-answered/.

Uber. How Are Fares Calculated, 2019d. URL https://help.uber.com/riders/article/

how-are-fares-calculated?nodeId=d2d43bbc-f4bb-4882-b8bb-4bd8acf03a9d.

Uber. Service Fee, 2019e. URL https://marketplace.uber.com/pricing/service-fee.

http://link.springer.com/10.1007/978-1-4757-6015-6
http://link.springer.com/10.1007/978-1-4757-6015-6
http://www.cpa.zju.edu.cn/participatory_budgeting_conference/english_articles/paper2.pdf
http://www.cpa.zju.edu.cn/participatory_budgeting_conference/english_articles/paper2.pdf
https://projecteuclid.org/euclid.aoms/1177700153
http://www.sciencedirect.com/science/article/pii/S016548969700005X
http://www.sciencedirect.com/science/article/pii/S016548969700005X
https://papers.ssrn.com/abstract=2836610
https://www.uber.com/legal/community-guidelines/us-en/
https://www.uber.com/legal/community-guidelines/us-en/
https://www.uber.com/drive/resources/dependable-earnings/
https://www.uber.com/drive/resources/dependable-earnings/
https://www.uber.com/blog/your-questions-about-the-new-surge-answered/
https://www.uber.com/blog/your-questions-about-the-new-surge-answered/
https://help.uber.com/riders/article/how-are-fares-calculated?nodeId=d2d43bbc-f4bb-4882-b8bb-4bd8acf03a9d
https://help.uber.com/riders/article/how-are-fares-calculated?nodeId=d2d43bbc-f4bb-4882-b8bb-4bd8acf03a9d
https://marketplace.uber.com/pricing/service-fee

BIBLIOGRAPHY 267

Abraham Wald. Sequential Analysis. Courier Corporation, 1973.

Hao-Chuan Wang, Tau-Heng Yeo, Syavash Nobarany, and Gary Hsieh. Problem With Cross-Cultural

Comparison of User-Generated Ratings on Mechanical Turk. In Proceedings of the Third Inter-

national Symposium of Chinese CHI, pages 9–12. ACM, 2015.

James Wiseman. Approval Voting in Subset Elections. Economic Theory, 15(2):477–483, 2000.

Pu Yang, Krishnamurthy Iyer, and Peter Frazier. Mean Field Equilibria for Resource Competition

in Spatial Settings. Stochastic Systems, 8(4):307–334, 2018.

H Peyton Young. Social Choice Scoring Functions. SIAM Journal on Applied Mathematics, 28(4):

824–838, 1975.

H Peyton Young. Condorcet’s Theory of Voting. American Political Science Review, 82(4):1231–

1244, 1988.

Yisong Yue and Thorsten Joachims. Interactively Optimizing Information Retrieval Systems as a

Dueling Bandits Problem. In Proceedings of the 26th Annual International Conference on Machine

Learning, pages 1201–1208. ACM, 2009.

Georgios Zervas, Davide Proserpio, and John Byers. A First Look at Online Reputation on Airbnb,

Where Every Stay Is Above Average. Technical Report ID 2554500, Social Science Research

Network, January 2015.

Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng, Pinghua Gong, and

Jieping Ye. A Taxi Order Dispatch Model Based on Combinatorial Optimization. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 2151–2159. ACM, 2017.

Yu Zhang, Jing Bian, and Weixiang Zhu. Trust Fraud: A Crucial Challenge for China’s E-Commerce

Market. Electronic Commerce Research and Applications, 12(5):299–308, 2013.

Zhibing Zhao, Peter Piech, and Lirong Xia. Learning Mixtures of Plackett-Luce Models. In Interna-

tional Conference on Machine Learning, pages 2906–2914, 2016. URL http://arxiv.org/abs/

1603.07323.

http://arxiv.org/abs/1603.07323
http://arxiv.org/abs/1603.07323

	Abstract
	Acknowledgments
	Introduction
	Dissertation outline
	Bibliographic notes

	I Pricing in Online Marketplaces
	Driver Surge Pricing
	Introduction
	Contributions
	Related Work

	Model, driver earnings, and platform objective
	Model primitives
	Driver strategies and earnings
	Platform objective and constraints
	Practical considerations

	Incentive compatibility with affine pricing
	Single-state model: multiplicative pricing is incentive compatible
	Dynamic model: multiplicative pricing is not incentive compatible
	Why is multiplicative surge pricing not incentive compatible?

	Incentive Compatible Surge Pricing
	Transition probabilities and expected time spent in each state
	Incentive Compatible pricing in the dynamic model
	Opportunity cost intuition for incentive compatible pricing
	Proof sketch of Theorem 2.4.1

	Numerics: Incentive Compatibility with Additive Surge
	Computing optimal driver policies
	Results

	Empirical Comparison of Surge Mechanisms
	Data setting and analysis description
	Analysis and results: value of short and long trips

	Conclusion

	II Designing Rating Systems in Online Marketplaces
	Designing Informative Rating Systems
	Introduction
	Related literature
	Platform measures to counter or encourage inflation
	Survey design and rating inflation in other contexts
	Theoretical analyses of ratings

	Online labor market experiment description
	Motivation and hypothesis
	Empirical context
	Method

	Labor market test results
	Verbal rating scales counter inflation
	Verbal rating scales yield more informative ratings
	Discussion

	A framework to compare rating scales
	Model
	Quantifying design performance via convergence rate
	Application to the online labor market

	Conclusion and discussion
	Challenges, opportunities, and limitations
	Future work

	Designing Optimal Binary Rating Systems
	Introduction
	Related work
	Model and optimization
	Model and problem specification
	Large deviations & discretization
	Solving the optimization problem
	Visualization and discussion

	Designing approximately optimal, implementable rating systems
	Mechanical Turk experiment

	III Designing Voting Mechanisms on Civic Engagement Platforms
	Iterative Local Voting
	Introduction
	Contributions

	Related Work
	Stochastic Subgradient Method
	Iterative Local Voting
	Optimization without Gradients
	Participatory Budgeting
	Implicit Utilitarian Voting

	Convergence Analysis
	Spatial Utilities
	Decomposable Utilities
	Equivalence to Directional Equilibrium

	Experiments with Budgets
	Experimental Setup
	Experimental Parameters
	User Experience

	Results and Analysis
	Convergence
	Understanding Voter Behavior

	Conclusion

	Optimizing Elections with Many Candidates
	Introduction
	Related work
	Model
	Model primitives
	Asymptotic design invariance

	Learning Rates and Optimal Design
	Learning rates
	Optimal design and discussion

	Theoretical Design Insights
	When does randomization help?
	K-Approval for selecting W winners

	Empirics and PB deployments
	Data description
	Model validation
	K-Approval for selecting W winners
	Randomization in practice

	Discussion

	Driver Surge Pricing
	Additional discussion and information
	Platform objective
	Driver earnings in each state
	Model's relationship to practice
	Supplementary Figures

	Extra empirical information
	Additional results and facts
	Empirical analysis additional information

	Proofs of single state model results
	Driver reward
	Proof of Theorem 2.3.1
	Proof of Proposition 2.3.1
	Uniqueness of optimal policy for single-state model

	Proofs of dynamic model results
	Driver reward
	Proof strategy for incentive compatible pricing and structural results
	Necessary lemmas
	Proofs of main results, Theorems 2.3.2 and 2.4.1
	Optimal policies as depend on derivatives
	Proofs of appendix-only lemmas

	Designing Informative Rating Systems
	Further analysis of the labor market test
	Verifying randomization in allocation of clients
	Robustness against high volume clients and allocation bug
	Regressing treatment response with treatment cell and other covariates
	More on inflation over time
	Analysis of cell with randomized order of answer choices
	Design approach using labor market data

	Amazon Mechanical Turk synthetic experiment
	Experiment description
	Results

	Proofs

	Designing Optimal Binary Rating Systems
	Mechanical Turk experiment, simulations, and results
	Experiment description
	Calculating optimal and H
	Simulation description

	Supplementary theoretical information and results
	Formal specification of system state update
	Detailed algorithm
	Formalization of effect of matching rates shifting
	Limit of as M
	Learning (, y) through experiments

	Proofs
	Rate functions for Pk(1, 2)
	Laplace's principle with sequence of rate functions
	Rate function for Wk
	Proofs of Lemma 4.3.1 and Theorem 4.3.1
	Additional necessary lemmas
	Proof for Theorem 4.3.2
	Proof of Theorem C.2.1
	Kendall's tau and Spearman's rho related proofs

	Iterative Local Voting
	Mechanical Turk Experiment Additional Information
	Indifference Regions Additional Information
	Proofs
	Known SSGM Results
	Mapping ILV to SSGM
	Proof of Theorem 5.3.1
	Proof of Theorem 5.3.2
	Proof of Propositions
	Proof of Theorem 5.3.3
	Proofs of Lemmas

	Optimizing Elections with Many Candidates
	Empirics additional information
	Proofs
	Asymptotic design-invariance
	Learning rates
	Design insights

	Bibliography

