
CIRCUIT SNAP

Nikhil Garg & Ankit Tandon

Electrical & Computer Engineering, University of Texas at Austin

ABSTRACT
Students learning circuits for the first time often have to solve
many voltage-resistor circuits in order to learn Kirchoff’s
laws, KCL and KVL. However, most introduction circuits
textbooks do not include answers to all their practice prob-
lems and examples. Without feedback, students often learn
less than they could. We introduce an automated solution
to this problem. Students will be able to take a picture of
a circuit from a textbook, and our system will identify all
the elements and solve the circuit. The system is robust and
works with circuits from the most popular introdoction to
circuits textbooks. We identify the most effective features
and machine learning techniques to work under the noisy and
small image constraints, along with evaluating those tech-
niques that did not work. These include principle component
analysis, k-nearest neighbors, and neural nets.

Note: Though we do not cite every function/command in
this paper, Python, OpenCV, and Scikit-Learn were used to
implement many of the modules of this project.

Index Terms— PCA, SURF/SIFT, KNN, SVM, Neural
Nets, Machine Learning, Object recognition

1. INTRODUCTION

In this report, we describe the implementation of an automatic
circuit solver from a photo. The problem entails preprocess-
ing, object recognition and association, and the final circuit
solving. Figure 1 contains the system flowchart.

2. PREPROCESSING

Preprocessing an image before trying to identify contours is
an essential part to making the system robust. Photos taken
of circuits will often be under different lighting conditions
and may be noisy. Preprocessing is used to normalize the im-
ages. Two key functions were used on the images. First, a
gaussian blurring filter is used to decorrelate noise. Tweak-
ing the window size and the variance of the noise were im-
portant, and a median noise filter is also considered. Ulti-
mately, a 5x5 window with a gaussian blurring filter with

Thank you to Dr. Bovik for providing this project opportunity, motivat-
ing us, and teaching us image processing. Also, thanks to the ICIP journal
for providing this lovely LATEXtemplate. This work is completed in Fall 2014
for EE371R at UT Austin.

Fig. 1. Flowchart for CircuitSnap

unit noise is used to deblur image. After blurring the im-
age to reduce noise, an adaptive threshold is used to convert
the image to a binary black/white image. A binary image
is especially useful for object recognition because it reduces
the dimensions of the data to send to the machine learning
component. It also makes the system more robust because
some textbooks color their circuits while other textbooks do
not. We first attempted a single threshold on the image, using
the image histogram. However, this technique did not prove
effective because of shadows introduced in the photo-taking
processing. Figure 2 shows an example of a photo in which
a static threshold failed. Next, adaptive thresholding was at-
tempted. Two adaptive thresholding methods were tried. With
an 11x11 block size, we first thresholded by the mean of each
block. However, this method degraded the quality of numbers
and other objects too much. Next, we used what is called a
Gaussian threshold. This method also uses a sliding window.
However, instead of thresholding by the mean of the block.
the method thresholds by a weighted sum of the block, with
pixels close to the center pixel given additional weight. This
method reduces the degradation of small details and reduces
dependence on the block size. The gaussian adaptive thresh-
old is used in our system. Through these two processes, we
are able to send a relatively clean and stanardized image to



Fig. 2. Photo with significant shadowing

Fig. 3. Photo of a circuit

our detection algorithms. Figure 2 shows a sample original
image, and Figure 2 shows the circuit after blurring and adap-
tive thresholding. This technique is not fool-proof, however.
Figure 2 shows a image in which adaptive thresholding ampli-
fied noise due to the thin nature of paper in a textbook. These
errors are handled downstream in the process.

3. CONTOURING TO ISOLATE OBJECTS

After obtaining a clean image from preprocessing, the next
step is to identify every number, symbol, and element image
inside the circuit. In order to be robust, feature detection must
be scale and size invariant, and must be able to handle small
deviations. Thus, template matching is off the table, and other
techniques must be used. The first step to recognizing objects
in a robust way is to isolate each circuit element, number, and
symbol from each other. To do so, we use a contouring mech-
anism as described in [1]. This technique follows ’lines’ or
connected components in the image, and then clusters based
on those lines. Rectangles are identified surrounding each
group of connected pixels, and each of these rectangles rep-
resent a potential circuit element or value. Figure 3 shows the
circuit from Figure 2 with potential objects recognized.

Note that resistors are not identified as potential elements
by the contouring because the method identifies each con-

Fig. 4. Circuit from Figure 2 after preprocessing

Fig. 5. Circuit for which adaptive thresholding introduces
noise

nected line component as a potential element, and resistors are
continuous with wires without any corner or without multiple
lines converging into one. Thus, are were identified through
traditional template matching with a twist. This method is
discussed below.

Next, these potential objects are identified.

4. OBJECT RECOGNITION

The next, most important component of the system is to eval-
uate and use object features to recognize circuit elements, val-
ues, and symbols in the circuit. This process is split into two
components – feature calculation and machine learning – with
resistor recognition following a different path than the rest of
the components.

4.1. Object Features

For each potential object identified by the line tracing de-
scribed above, features are calculated to attempt to uniquely
identify the element. First, the region of interest is resized to
a 20x20 block. This resizing makes the system robust against
photos of different sizes. If the region needs to be reduced
in size, the region is subsampled. If it needs to be increased



Fig. 6. Potential objects from contouring preprocessed circuit

in size, the region is oversampled and then the missing pixel
values are filled in with cubic interpolation.

Next, the system extracts features from each region. Many
potential features were tried, and the best-performing features
were chosen for the system. First, we attemped to calculate
SIFT and SURF features from the region of interest. How-
ever, the small block size (20x20) along with poor image qual-
ity resulted in poor performance in object recognition. Three
features were finally identified to be sent to the machine learn-
ing component. First, the system sends the raw pixels in the
entire 20x20 block. This ’feature’ works because the system
eventually uses K-Nearest Neighbors as its separating algo-
rithm. Next, the system sends the entire 20x20 FFT of the
block. Sending the FFT creates a more robust system be-
cause though different fonts or textbook pictures may differ
slightly, most symbols are drawn approximately the same and
contain the same frequencies in each direction. With ade-
quate training, these features performed decently, with about
60% element identification. The final feature, which improves
element detection significantly, is the top components identi-
fied by Principle Component Analysis. Principle Component
Analysis is ”Linear dimensionality reduction using approxi-
mated Singular Value Decomposition of the data and keeping
only the most significant singular vectors to project the data
to a lower dimensional space”[2]. In other words, we identify
the most significant eigenvectors of the region image matrix,
and send those values to the machine learning component.
PCA is especially resistant to noise and small deviations, and
it effectively separates elements.

4.2. Resistors

As mentioned above, resistors are not identified as potential
objects by contouring. Thus, template matching is used to
identify resistors. However, typical template matching would
not be scale and rotation invariant, and it would not work with
new textbooks or resistor drawings. Thus, we used an array
of templates and attempted to match the templates at various
scales and rotations, with differing thresholds to handle noise.
However, this method introduces many false positives, on the
order of 7 false positives for resistors for every correctly iden-

Fig. 7. Circuit with resistors correctly identified

Fig. 8. Circuit in which skew pevents resistor detection

tified resistor. Thus, we used fuzzy weighing to identify the
possible resistor that would best explain the rest of the ele-
ments. In particular, we weighed how close potential resis-
tors were to values for resistors, along with how strong of a
match the resistor was with a given template. The system also
takes into account wires/lines in identifying most probable re-
sistor. Figure 4.2 contains a circuit in which the resistors are
correctly identified. However, this method is not fool-proof,
and in some circuits the skew is too high to identify resistors
using our method. Figure 4.2 contains an example of such a
circuit.

4.3. Machine Learning

The features calculated for each potential object identified
through contouring were sent to a machine learning module.
Three types of modules were considered. First, Support Vec-
tor Machines (SVMs) were used. SVMs attempt to find a line
in the high dimensional space that separates different types
of objects. However, our data was too noisy and the features
too high dimensional (the FFT and the pixels themselves con-
tributed 800 dimensions, before PCA), and SVMs produced



Fig. 9. Identified values, symbols, and elements for circuit in
Figure 4.2

results on the order of 15% recognition at best. Next, neural
nets were attempted. However, we did not have enough train-
ing data for such a high dimensional deep neural net to be
effective. Our system requires training on the order of 20 im-
ages, and neural nets typically work effectively only on the or-
der of hundreds or thousands of training samples. Ultimately,
K-Nearest Neighbors was used for the machine learning com-
ponent. This method is resistant to noisy samples and errors.
It also requires few training samples. For some objects, espe-
cially some of the more identifiable numbers, a single train-
ing sample works in identifying the number across different
textbooks, fonts, and scales. This method works very well
in identifying objects. Figure 4.3 shows elements recognized
for a sample circuit. Note that though there are several errors,
most of the elements have been recognized correctly.

5. OBJECT GROUPING

After all the individual objects have been recognized, they
must be combined in a way as to accurately reflect the tar-
get circuit. This module must handle minor errors in object
recognition and combine associated elements, such as multi-
digit numbers and voltage sources, together. To do so, the
system employs logic to find best explanation for the recog-
nized objects in such a way that minimizes error distances and
punishes repetitions. A similar method as the resistor pruning
method described above is ultimately used.

6. CIRCUIT ANALYSIS AND RESULTS

Once the circuit elements have been identified there is still
significant work to be done in order to make sense of the
circuit and solve for desired values. Initially our plan was
to leverage a software package called Ahkab, which solves
circuits. The reason we didn’t use Ahkab is two-fold: first,
Ahkab does not perform systematic KVL analysis, instead it

Fig. 10. Red values indicate voltage drops and Blue values
represent mesh currents

Fig. 11.

analyses circuits by performing a simulation across all ele-
ments and stepping the different sources at a specified gran-
ularity. Second, Ahkab is primarily built for AC and much
more complicated circuits for which analysis by hand is too
complicated. Circuit Snap is targeted towards analysis of sim-
ple circuits. We decided to build out our own circuit analysis
module that we could adapt later on as we choose to han-
dle more complicated circuits. Our approach to solving cir-
cuits is to calculate the current around every mesh by using
mesh analysis and then solve for the voltage drop across all
elements. We do this by first discarding extraneous meshes
i.e. ones that have no elements or ones that are supermeshes.
Once we have finalized our list of meshes we attach elements
to them in the appropriate branch (top, bottom, left or right).
This involved analyzing the spatial relationships between ele-
ments and all the meshes. We had to allow for some tolerance
regarding how close elements can be to be considered part of
a mesh. Now that the elements have been attached to meshes
we make a pass through every mesh and loop through its ele-
ments in a clockwise fashion to add up the resistance values.
If an element exists on multiple branches we must subtract the
current running against the mesh being inspected. Doing this
analysis leaves us with a matrix of equations and we can now
solve for the unknown mesh currents by performing Gaussian
elimination. We used the python package numpy to perform
this row reduction. Figure 10 and Figure 11 show the result-
ing image. We display the voltage values to the top left of the
resistors and the mesh currents go toward the bottom of the
meshes. From the figures one can see that our system is ro-



bust enough and works across various types of circuits (from
screenshots of pdfs to noisy images taken of textbooks).

7. WHAT WE LEARNED

We learned that achieving robustness is hard but essential
and certainly possible. At every step along the development
process we had to carefully evaluate our design decisions to
make sure that we were building a tolerant, robust system that
would work across different types of circuits and images. We
also learned that features that might work in theory may not
work in practice. Certian features like SIFT work well in most
images but since our circuit images were small sized they
were performant enough to deliver solid results. The same
thing goes for Machine Leanring techniques. While SVMs
are a great idea, our data was too high dimensional for SVMs
to work well. Similarly Neural Nets would have seemed like
a great idea to use however we lacked sufficient training data
to leverage any real advantage from neural nets. Finally, we
learned about how essential preprocessing images are. With-
out our preprocessing steps, image analysis would have been
nearly impossible. Preprocessing also makes our system more
robust as it normalizes all the images we process and removes
noise.

8. WHO DID WHAT

Nikhil handled the element detection, feature learning and
evaluation, and image preprocessing. Ankit handled the cir-
cuit analysis, image overlay, and KVL/KCL loop calculation.
Together we brainstormed various approaches to tackle the
problem at a high level; implementation was split up amongst
members.

9. REFERENCES

[1] R. S. Ramakrishna, S. K. Mullick, and R. K. S. Rathore,
“A new iterative algorithm for image restoration,” Com-
puter Vision, Graphics, and Image Processing, vol. 30,
no. 1, pp. 47–55, 1985.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.


