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Chapter 1
Logic

1.1 The Transistor

Most computers use MOS transistors, metal oxide semiconductor transistors. This is the lowest
level of abstraction that we will go over in this class, and we must only know that there are two
types, p and n, and their basic properties. In our scope, these transistors operate similarly to
switches. For an n-type transistor, if there is a logic 1" at its gate, the transistor acts as a short
between the source and drain, and if there is a ‘0, it acts as an open between the source and drain.
Note that for a p-type transistor, there is a logical NOT before the gate such that if there is a logic
‘0" at that terminal, the transistor will act opposite to the n-type and provide a short between the
source and drain, and with a logic “1’, will provide an open.

LIGHT BULB EXAMPLE:

Figure 3.1 on page 52 of Intro To Computing Systems shows a simple circuit consisting of 4 “circuit el-
ements”: the 120-volt power supply, the wall switch, the lamp, and the wire that connects all the other
elements. Now, the goal here is to get current to flow through the light bulb, so that it turns on. The only
way to get current to flow through the light bulb is to have a voltage drop across it. That is to say, we need
to connect one end of the light bulb to a relatively high voltage, and the other end to a relatively low voltage.
Luckily, we have our 120-volt power supply here. Notice that this also has 2 terminals. We refer to the lower
terminal as “ground” and we say that it is at 0 volts. By doing this it allows us to reference the upper terminal
as 120 volts. If we were to simply connect the 2 terminals of the battery to the 2 terminals of the light bulb,
the light bulb would turn on, because we created a voltage drop across it (a drop of 120 volts to be exact).
However, such a circuit would be rather useless. We would rather have the ability to turn the light on and off,
so we add a switch, as shown in the figure. When the switch is open, the wire will not connect to the bulb and
current cannot flow through a broken circuit. Then when the switch is closed current will flow through the
bulb and the light will turn on. Now let’s throw out the switch and replace it with an n-type transistor as in
figure 3.2b of textbook. As you know when you supply a relatively high voltage to the terminal of an n-type
transistor, it will act as a piece of wire. This will cause the 120-volt terminal of the battery to be connected
to the upper end of the light bulb and the light bulb will turn on. When a low voltage is supplied to the
transistor, the circuit will be broken. We usually simplify the drawing to look like the picture in figure 3.2c
of the textbook where we remove the battery and simply label the high voltage with a horizontal bar and low
voltage with an arrow on different ends of the circuit.
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Figure 1.1: Transistor diagrams for common logic gates

1.2 Introduction to Logic Gates

The next step is to build what are called “logic gates”. In chapter 2 of the textbook, you learned
all about different logic operations. Now our goal is to implement these logic operations with the
transistors. We will refer to a relatively high voltage as ‘1" and a relatively low voltage as ‘0". The
implementation of a NOT gate is shown in figure 3.4 of the textbook. Notice that when the input
is set to 0, the output is connected to 1 (high voltage), and when the input is set to a 1 the output is
connected to 0 (low voltage). The NAND gate shown in figure 3.7 of the textbook is a bit trickier.
Consider the AND operation. An AND will only produce a 1 if all of the inputs are a 1. That is to
say that if at least one of the inputs is a 0, the output of the AND gate will be 0. The NAND gate
is just the opposite. Therefore if at least one of the inputs to a NAND gate is a 0, the output will
be a 1. If none of the inputs are 0, then the output will be a 0. When we think of the NAND gate
this way, the structure of the transistors makes more sense. We connect the p-type transistors in
parallel because one of them being supplied with a 0 is a sufficient condition to connect the high
voltage to the output. Similarly, we connect the n-type in series because it is necessary for all of the
inputs to be a 1 for the output to be connected to 0. Notice that if all the inputs are 1, none of the
p-type transistors will be connected; therefore the connection to the high voltage will be broken.
Also notice if even one of the inputs is 0, then the connection to ground will be broken at some
point too. This means that it will never be the case that the output is connected to both 1 and 0.
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We NEVER want to connect the output to both 0 and 1. Similarly, it is possible to create a circuit
in which out is not connected to either a 1 or 0. In general, this is also a situation we would like
to avoid. We say that “out floats” referring to the fact that it is not at any particular voltage, the
output is just sitting there floating in space. The last piece of curious information about this section
is the construction of the AND gate. The design is to build a NAND gate and then feed the output
of the gate into an inverter, thus forming an AND gate. This begs the question, “Why do we not
just connect the n-type transistors in series to the high voltage and the p-type transistors in parallel
to the low voltage?” The issue with this is beyond the scope of this course; however it is worth
mentioning to put the curious mind at rest: This is not a valid circuit due to the makeup of the
materials of the transistors. This is not an important concept to understand now, it is just making
clear that the design in the book is valid.

DeMorgan’s law

DeMorgan’s law is a very important concept that will not go away. I will leave the textbook to
discuss it in detail and I will focus on a few tricks that you can use to help apply DeMorgan’s law
in designing structures out of logic gates. Look at the pattern that occurs when we apply DeMor-
gan’s law to gates (figure 3.8 of the textbook). We see that an AND gate is equivalent to an OR gate
completely surrounded by bubbles. Similarly, we see that an OR gate is equivalent to an AND gate
completely surrounded by bubbles. We can use this fact to complex gate structures.

Figure 1.2: Demorgan’s Law with Logic Gates
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Combinational and Sequential Logic Circuits

Just as we used the transistors to build the logic gates, we can now raise the level of abstraction
even higher and use our gates to build more complicated logic circuits. Note that we could build
the logic circuits directly out of the transistors, however this would be difficult and tedious. Using
the abstraction of the logic gate makes the job MUCH simpler. There are 2 types of logic circuits:
combinational and sequential. We will first go over combinational then return to sequential.

1.3 Combination Logic

Combinational circuits are all about the “now”. That is to say, the output will reflect whatever
the inputs happen to be at that time. The past inputs will have no effect on the output. Common
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combinational circuits include: a decoder, a mux and a full adder.

Decoder

The purpose of the decoder is, as its name suggests, decoding things. For example, say we have
8 devices, and we also aren’t very creative, so we call the devices, device 0, device 1, device 2, ect.
Now say we give the user 3 wires, and we tell them to drive a signal on those wires to select the
device they would like to turn on. As you know, to uniquely identify 8 different things we need 3
bits, hence the 3 wires. The user will drive a 000 if he wants to refer to device 0, a 001 if he wants
to refer to device 1, a 010 if he wants to refer to device 2 and ect. Now if only there were some sort
of combinational logic circuit to take the 3 inputs in binary and convert it into 8 outputs, which
corresponded to the 8 unique representations of 3 bits. This is where a decoder comes into play. If
the input 011 is sent into the input wires then the 3rd AND gate will produce a 1, if the input 000
is sent into the input wires then the Oth AND gate will produce a 1.

Questions:

Easy: What do the inputs need to be to activate device number 67

Medium: Could it ever be the case that more than one of the devices is activated at once?

Medium: if the output of the 7th AND gate is a 1, what is the output of the 4th AND gate?

Hard: Add 1 gate and some connections to a decoder to change it in the following way: there will now only
be 1 output (as opposed to 8), if the number driven on the input wires is even, make the output a 0, if the
number driven on the input wires is odd make the output a 1.

Mux

Now a different situation: say we have 2 devices, device A and device B. Each of these devices has
a 1 bit output either a 1 or a 0. Sometimes we want to read the output from device A and other
times we want to read the output from device B. This is where a mux comes into play. Based on
what the select signal is we can choose between device A and device B.

Figure 1.3: Addition with outputs labeled

Carry - >
bit a >
bit b >
Sum >

Full Adder

Think about the addition of two binary numbers, 1011 + 1010. As you've learned, it’s just like reg-
ular addition from elementary school where the numbers are added by individually adding their
digits including any carries from the previous digit’s sum. Let’s take our example 1011 + 1010:
think about how you can separate this addition into 4 separate sums, each sum with three inputs.
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Two inputs would be the two numbers being added and the third input would be the value of
the carry bit. The output of each sum would be the addition of all three inputs. We can design
an adder using the same idea of separating digits. To better understand the flow, we'll follow the
second digit position of bits as we design the full adder.

The best way to design this is to first draw out a truth table as shown below in Figure 1.4 This

Figure 1.4: Truth Table for addition

a b; carry, carmyi.q 5
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 - 1 | 0
F 1 0 1 Q—_--_?
1 1 1 1

truth table should include all inputs (bit a, bit b, and carry bit), as well as all the outputs (the next
carry bit and the sum). The next thing to do is to set up an array of AND gates in the same for-
mat as a decoder. Why 8 AND gates? As mentioned above, a full adder has 3 inputs, therefore,
there are 8 unique combinations of those inputs, so 8 AND gates will be needed to portray all 8
combinations. Just like a decoder, when a particular sequence of bits comes in, the AND gate that
corresponds to that sequence will output a 1 and all other AND gates will output 0. Now look at
the number of outputs you want to have. Since we want to have 2 outputs (a sum output and a
carry output) this means that we want to have 2 OR gates. Why 2 OR gates? Remember, we have
8 combinations, as conveyed by the 8 AND gates. When some of these AND gates produce a 1,
we may want our sum output to be a 1, and when others are a 1, we may want the carry output to
be a 1. This is because the carry and the sum bits do not necessarily use the same AND gates to
determine their value. For example, when the input 010 is received, we have the output set to S=1
and C=0. Or when the input is 110, we have the output set to S=0 and C=1, as marked on the truth
table above. Remember that an OR gate will produce a 1 if any of its inputs are a 1. So based on
the truth table values, we know that we want the carry-bit OR gate to be a 1 when we get inputs
011, 101, 110, or 111. Similarly, we want the other OR gate, the one that outputs the sum, to be a
1 when we get inputs 001, 010, 100, or 111. Now we can connect the wires. Again, to connect the
wires, simply refer to the truth table. If the sum output shows a one, then we look at what inputs
caused that one, and connect the corresponding AND gate to the OR gate labeled "sum". Similarly
done with the carry output. If neither of the outputs is a 1 then we leave the corresponding AND
gate unconnected to the OR gates. To see the full adder implemented, refer to figure 1.5. Now that
we have designed the circuit to add up a single digit we just need to connect them in such a way
to add numbers with multiple digits. We will abstract our circuit with a box labeled full adder so
that we have a simpler time drawing the completed diagram, which is shown in the next figure,
1.6 on page 6.
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Figure 1.6: The full, abstract logic for a 4 bit adder
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The concept that we used to design the full adder can be generalized into a broader topic called
Programable logic arrays or PLA for short. If we have n inputs, we will need 2" AND gates to
uniquely identify all of the combinations of the inputs. This array of AND gates will form a de-
coder, whose outputs will feed into an array of OR gates. The number of OR gates is equal to the
number of outputs. The connections between the AND array and the OR array will be based on

which truth table rows have an output of a 1.

Because we can implement any truth table out of AND, OR, and NOT gates (using the above
algorithm), we say that AND, OR, and NOT is “logically complete”. Meaning that any logic func-
tion can be described using only AND, OR, and NOT operators (as opposed to using NAND, NOR,

or XOR in addition).

Q: Are there any other sets of gates that are logically complete?
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Q: Implement the following truth table using this method.

a b C Z, z; Z3
0 0 0 1 1 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 1

Q: Implement an AND gate out of a mux.

1.4 Sequential Logic

Sequential circuits are circuits whose output is affected not only by current inputs, but also previ-
ous inputs. We do this by saving information about the inputs that have already been applied to
the circuit. We call his information the “state” of the circuit. State is a very important and simple
concept to understand. The classic example is a vending machine. Imagine you are trying to buy a
snack out of a vending machine that costs 75 cents. For now, let’s say that the machine only accepts
quarters. Initially, the machine would start in a fresh state, meaning that no quarters (inputs) have
been received yet. Then when you put in a quarter the state of the machine would change from
the “no money” state to the “one quarter” state. Likewise when you put in the next two quarters
the state would change from the “one quarter” state to the “two quarter” state and then to the
“three quarter state”. If the vending machine had been a combinational circuit, then you would
sit there putting in quarters all day, but the machine would never realize that you had put in all
three quarters. This is because combinational circuits have no memory, they only see that a quarter
was input, they wouldn't see that a “third” quarter or a “second” quarter was ever input. We will
come back to the concept of state, but for now I just wanted to illustrate that, unlike combinational
circuits, sequential circuits have a memory to them.

The R-S Latch
How do sequential circuits have a memory to them you ask? Well, we use what is referred to as

Figure 1.7: A standard RS Latch

a “latch”. A latch is a circuit that can store a piece of information. The book talks about the R-S
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latch. The name R-S comes from the fact that the circuit has 2 inputs, reset and set, or R and S.
The circuit has one output, which is read from the output of the upper NAND gate. Note that the
value that is output by the latch is the same as the value contained in the latch. The circuit is
illustrated in the figure above. Note that the output of each of the NAND gates are fed into the
input of the other gate, creating a circular path for the signal to travel, thus it is preserving a bit
inside the latch. The values of R and S are normally held at a 1 by default (this is called quiescent
state). This is because of how a NAND gate behaves when one of its inputs is a 1. First consider
how the AND gate behaves, if we have a mystery input called Q, where Q can either bea 1 ora 0,
Then what is the value of Q AND 1? The answer is always the same as whatever the value of Q is.
This concept was covered earlier in the “masking” section of the book. Well a NAND gate is just an
AND gate with an inverted output, so the output of Q NAND 1 will always be the opposite value
of Q (NOT Q or Q-bar). So if both R and S signals are held at a value of 1, then the value inside the
latch will not be affected, it will simply be inverted every time it passes through one of the NAND
gates, which is ok. Now consider what happens to a NAND gate when one of its inputs is a 0. If
we feed in Q AND 0, the output will always be 0, therefore Q NAND 0 will always have an output
of 1. Now consider what will happen to the state of the latch if initially both R and S are at 1, but
then we change the value of S to 0. Initially we cannot predict the value of what was contained
in the latch, so we will call it Q for now. The upper NAND gate will have inputs of Q NAND 0,
which as mentioned results in an output of 1. This means that the value in the latch is now a 1,
regardless of whatever value of Q it previously held. If we follow this new 1 down to the lower
latch, the two inputs will be 1 NAND 1. Because R is still being held at a 1 (its quiescent value) the
output will just pass on the input and invert it. So the output of the lower NAND gate will now
be 0. After we have held S at a 0 for an amount of time, we will raise its signal back up to 1. Note
that doing this does not affect the value of 1 contained in the latch. This is why the upper signal is
called set, because if it is brought to 0 for an amount of time, then the value contained in the latch
will change from whatever value it used to be to a 1. The lower signal is referred to as reset and
will work similarly, except it will change the value in the latch to 0. Setting both S and R to 0 is
invalid and will result in unpredictable behavior. See the truth table below for an overview of the
R-S latch operations.

Gated-D Latch

Rather than have to worry about whether to set the S or the R signal, it would be better if we could
just specify to store a 0 or a 1 in the latch. This is where a gated D latch comes into play. D and G
are inputs into the latch. D is the value you intend to store in the latch and G is the gate signal. If
you want to store the value of D in the latch you first need to “open the gate” or set G to a 1. Setting
G to a 1 could be referred to as “enabling the latch”. Notice if G is a 0 it does not matter what the
value of D is, the S-R latch will not change. If Gis a 1 and D is a 1, then the S signal will be brought
to 0, and a 1 will be stored in the latch. If Gis a 1 and D is a 0 then R will be brought to 0 and the
state of the latch will change to 0.

1.5 Applications of Logic
Register These gated D latches can be lined up to store a sequence of bits. We can tie a single enable
line to all of the G signals. This will form a register with a single enable signal. When the enable

signal is brought to a 1 the value is let into the register.

Memory
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Figure 1.8: A standard RS Latch truth table

INPUTS OUTPUTS OPERATION

0 0 X X 1 1 undefined
"""
1 1 1 0 1 0 no state change
"""
1 1 0 1 0 1 no state change

We can now stack the registers to form multiple locations in which we can store values. These
multiple locations each have a specific identifier known as its address. The number of bits in each
location is the addressability. Say we stack 8 registers, each register can hold 16 bits, i.e. it contains
16 gated-D latches. We can use the decoder we learned about earlier to select which register we
would like to enable. Because there are 8 locations we need a 3-8 decoder. This whole structure is
considered to be memory. The 3 lines feeding into the decoder are called the address lines. We can
use them to select which memory location we want to refer to. The number of unique locations in
a block of memory is called the address space. There are 2 operations we would like to perform
on memory locations, write values to them and read them at a later time. To read a value at a cer-
tain memory location, we can take the output of each location and AND it with the corresponding
output from the decoder. This means that the only values that will be read will come from the
location that was selected by the decoder. To write a value at a certain location, we set the inputs
to the registers to the value we want to store and AND it with the output of the decoder (which
provides where we're going to store the value). Unlike reading a value, however, we must set the
WE (write-enable) signal to a 1 before our value is stored inside the register.

1.6 Finite State Machines

Finite state machines tie together all of what we’ve learned so far. Let’s go over this chapter from the
beginning: we have transistors, and from transistors we can create logic gates that can perform our
logical operations. From the logic gates, we can create combinational and sequential logic circuits.
Combinational circuits, such as decoders and muxes are mainly used for selection; similar to a
full adder, we can use a decoder and OR gates to create a programmable logic array (PLA) that
can do any logical operation we want. Sequential circuits such as R-S latches and gated-D latches
(which are just R-S latches with 2 added NAND gates and a write enable signal) are used for storing
bits. Line up your gated-D latches and you have a register. Stack up your registers, add some
combinational logic (i.e. decoders and muxes), and you've got memory. From reading the above
sections, we know it’s not as simple as this brief overview, but this is meant to show the flow of
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abstraction from transistor to memory. So now that we’ve got memory, what happens next? With
a FSM, we have four parts to understand:

1. Combinational Logic Circuits: “decision” elements
2. Sequential Logic Circuits: “storage” elements

3. States and State diagrams: representation of a machine; describes the machine’s different
states and shows each state’s important values

4. Clock: trigger for the transition from one state to the next We’ve gone over combinational and
sequential logic circuits and how we get memory from the two, so the next order of business
is the concept of state and state diagrams.

State Diagrams

Because of the memory, we must now be able to track all possible events/situations that can happen
with our machine. We are no longer just keeping track of the current input but past information as
well so we use the concept of state and state diagrams to understand and keep track of the system.
Otherwise, we’d have different inputs, different outputs, different choices, and a plethora of possi-
bilities to mentally keep track of. It may be important to note how our daily lives highly resemble
the work of computers. In a sense a person’s life is one giant state machine. Let’s take your life, for
example. Imagine every important/memorable moment in your life so far. Your memories of those
moments are like frozen depictions of important events. You remember particular details about
those memories. Those memories would be the different states in your system, and the details of
each memory are what you use to describe each one and differentiate one from other memories.
Similarly, we need ways of differentiating states; therefore, each state will have a complete set of
properties that describes itself. These properties can be stored using various storage devices, like
the ones discussed in previous sections of this chapter. Each state connects together with all other
states to create a flow of how the system should operate. This is a representation of the finite state
machine showing all of the FSM’s important events and each event’s information that leads to an
output or the next event. In this class, we will be focusing on Moore machines, which are FSMs
whose outputs depend only on the current state you are in. This may sound confusing so let’s take
a look at a simple state diagram (see Figure 1.6) of a state machine and see what we can find out
about the system. S0, S1, S2, and S3 are the labels of each state and they will each have a binary
number that uniquely identifies them. How do we know how many bits each state can be identified
as? Because we have 4 states, we know that each state can be described using 2 bits, because 22 is 4.
Now we know that each state has a corresponding value identifying it, what is that value? Really,
we can make it whatever we want. S0 can be 00, 01, 10, or 11. Each state just needs to be uniquely
identifiable. In later classes, you will see how assigning certain bit values to certain states can ac-
tually optimize the performance of your machine. But for now, we will make it simple by making
S0 be 00, S1 be 01, S2 be 10, and S3 be 11. Let’s look at a particular state. The number separated by
a backslash from S0, in this case ‘1’, is the output of the machine when it is in that state. We put the
output inside the state, because since it’s a Moore machine, the only thing affecting the output is
the state. The numbers corresponding to the arrows are inputs. What does this state mean? When
you are in state SO:

1. You have a present output of 1
2. If you get an input of 0, your next state is SO

3. If you get an input of 1, your next state is 52
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Figure 1.9: The State Machine referred to above

How do we make sense of this state diagram? When we have a state diagram, we can make a truth
table by analyzing its parts. From above we know everything about SO, so we can put that in the
table, and we do this till our table is filled out. Then, we can put our bit value assignments of each
state into the table. Refer to Figure 1.11 on page 12.

Now that we can comprehend states and state diagrams, how is this actually implemented? The
first thing to take into consideration is how you can go from one state to the next.

The Clock

The clock is a signal that alternates from 0 to high voltage (or 0 to logic ‘1’); see Figure 1.6 below.
The state of our system changes at the clock cycle’s rising edge, marked by the arrows on Figure
1.6 on page 13.



12

CHAPTER 1. LOGIC

Figure 1.11: The truth table described previously

Present State Next State Output
X=0 X=1
SO SO S2 1
S1
S2
S3
Present State Next State Output
X=0 X=1
SO SO S2 1
S1 SO S2 1
S2 S2 S3 1
S3 S3 S1 0
Present State Next State Output
X=0 X=1
00 00 10 1
01 00 10 1
10 10 11 1
11 11 0l 0
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Taking a look at the filled truth table on Figure 1.6 on page 12, you notice that X, the input signal,
determines which state the machine will be in next. The clock is a way to synchronize the ma-
chine’s movements so that even though signal X may be ready to change the machine to the next
state, the machine will not change states until the clock cycle is at a rising edge (the moment clock
changes from logic 0 to 1). It is important to remember that state change is dependent on both the
clock and input, X; the clock must be at a rising edge and X must be present to know which state
the machine will actually go to.

Figure 1.12: A clock signal, which oscillates back and forth between logical 0 and 1. State changes
occur at a rising edge, marked by the arrows.

1.7 LC-3 FSM & Data Path

The LC-3 (Little Computer 3) is a computer whose data path is shown in Figure 3.33 of the textbook.
Notice the Finite State Machine inside? The state diagram displayed on page 568 (Figure C.2) of
the textbook represents the routes throughout the data path. It may be intimidating, but imagine
how you would go about tracking signals throughout the data path. You can imagine the data path
as a city, and a signal as a person. The bus is the subway that people (signals) use to get around
to the different places. The state diagram is like a map. Depending on what you want to do, the
diagram guides you where to go in the data path and at what time. As we discussed, the diagram
represents every possible event, or state, that the machine can be in. You can think of the FSM
as the control unit of the whole system. The functionality of the LC-3 will be explained in much
greater detail later so don’t worry so much that you may not understand everything. Our purpose
in this section is to show you how all of the structures within the data path are made from logic
structures that you learned in this chapter, how they are synchronized together, and how you can
use these tools to specifically analyze each part of a whole machine.
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1.8 Logic Practice Problems

Problem 1: Combinational Logic (Programmable Logic Arrays)

Question: Given the truth table in 1.13, can you design a Programmable Logic Array that imple-
ments the truth table- obtaining the desired output from each given input combination? Note:
A,B,C are each 1-bit inputs.

Figure 1.13: Truth Table for Problem 1
A B C Out

0 0 0

0 1 1

o|lo|O| O
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Problem 1 Solution

If you see a question like this, your first move is to “crack the truth table”. Every truth table can be
expressed through a truth statement formatted OUT = [expression], where the expression involves
your input and any combination AND, OR, XOR & NOT. For instance if you were given the truth
table in Figure 1.14, you could tell me that OUT = (A AND B).

Figure 1.14: Another truth table example
A B Out

0 0 0
0 1 0
1 0 0

Again, you are looking to “crack the truth table” or create a statement that works for all input/out-
put combination. This is the underlying idea of programmable logic arrays, in that you can create
one for any truth statement you desire.

So let’s look at our truth table. What do you notice? Well, perhaps not much. With three inputs
you often want to look at relationships between two inputs, or to catch on to obvious patterns.
Here, you can see that anytime the input C is a 1, the output is a 1. What does this tell us? In our
truth table we must have some relationship between A and B and then have that result OR’'d with
C, because anytime C is a 1, out is a 1, but anytime C is 0, the output is contingent on only A and
B. What I just said is very important. If we know that, anytime that C is 0 the output is only con-
tingent on A and B. So now we can look at the four cases where C is a 0 and look for a two variable
relationship so that we can complete our truth statement. Let’s look at what we're left with:

Figure 1.15: Simplified truth table
A B Out

0 0 0

0 1 1

1 0 0

1 1 0

We expect some kind of AND relationship, given OUT is 0, except for 1 case. (A AND B) makes
sense but only if cases (A=0, B=1) and (A=1, B=1) was reversed. Let’s try using the NOT modifier.
If we try (A and notB), on case 2, we see it doesn’t work as 0 AND 0 is not 1. If we try (notA and
B), we see that all 4 input combinations work for the desired output.

To put it all together, we can now view the truth table as a whole, remembering what we said
about C to arrive at the following statement:

OUT =[(A AND B) OR C]
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Cracking the truth table is definitely the hardest part of the problem. In order to draw the PLA, we
literally just draw what the truth statement is saying using the gate symbols that we are familiar

with:

Figure 1.16: Logic Gate representation for problem 1
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Problem 2: The Finite State Machines

The combination of evaluating inputs and outputs results in the construction of a finite state ma-
chine. More importantly, it should be known that there are a specific number of inputs, outputs
and states in a FSM. In a diagram of this system, bubbles represent states. Typically, these bub-
bles will have labels in them, which indicates the name of the state. Also, linking these individual
states are arrows. These arrows indicate the inputs that can be taken to arrive at the next state, so
for this reason they can be thought of as pathways between states. For Moore machines, the output
is displayed inside each state, and in our example they are underneath the name of the state.

Figure 1.17: FSM for Problem 2

Thitial state

Let’s take a look at this example. If you arrive to the happy state, you will always output 7, if
you arrive to the hungry state you will always output 3, and if you arrive to the sleepy state you
will always output 4. Try to fill in the data for all the combinations in the Moore machine above.
(Hint: there are 12 combinations. One is done for you.)

Current State: Input: Next State: Output:
Happy 0 Hungry 7
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Problem 2 Solution
Explanation/Summary — The “input” refers to the numbers corresponding to all outgoing arrows

Moore Machine:

Current State: Input Next State: cutput:
Happy 0 Hungry 7
Happy 1 Happy 1
Happy 2 Hungry 7
Happy 3 Happy 7
Hungry 0 Hungry 3
Hungry 1 Sleepy 3
Hungry 2 Sleepy 3
Hungry 3 Hungry 3
Sleepy 0 Happy 4
Sleepy 1 Hungry 4
Sleepy 2 Happy 4
Sleepy 3 Sleepy 4

from the current state you are in, which means it is the input to the next state. The “next state”
means what its name suggests. It is the next state given the input received. The “output” refers to
the output of the current state, which, because this is a Moore machine, is the number correspond-
ing to the current state. Note: The output does not refer to the next state’s output. You have not
reached that state yet to output its value.
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Problem 3: Finite State Machine

American Airlines flight 306 is utilizing a finite state machine to control the actions of the plane.
Duplicate the FSM according to the description provided as follows: The plane is always in one of
four states: TAKEOFF, CRUISE, EMERGENCY, and LANDING. The plane is initially in TAKEOFF
mode, and it remains in this mode as long as it has not reached its optimum altitude. In TAKEOFF
mode, the seat belt sign is lit and the safety video is played. Once at the optimum altitude, the state
switches to CRUISE mode, where the flight attendants serve drinks. While in CRUISE mode, the
flight can drop below the optimum altitude, in which case the state will switch back to TAKEOFF
mode. If the plane sees an obstruction at any time in its path, it will engage an EMERGENCY
sequence, and it will remain there as long as it observes the obstruction in its path. In this sequence,
oxygen masks will eject from the ceiling. Once the obstruction has cleared, it will re-enter into
CRUISE mode. The gradual LANDING sequence is initiated if the destination is in sight, or if the
plane is on a collision course. This sequence necessitates the seatbelt signs to be lit, and the cabin
lights to be dimmed. A plane is declared to be on a collision course if it has previously been in
an EMERGENCY mode, and the obstruction is too close to be avoided. Note that if the plane is in
the LANDING sequence and it notices an obstruction, it will continue to land, but away from the
obstruction. Take Note: the final state is LANDING, the first state is TAKEOFF.

1. Assign attributes to the following 3-bit inputs. All may or may not be used.
000 - collision course
001 -
010 -
011 -
100 -
101 -
110 -
111 -

2. Assign attributes to the following 2-bit outputs, and then fill them in correspondingly in the
diagram below. Note that seatbelts and the safety video are grouped into one output, and
seatbelts and dimmed lights are grouped into another output.

00 -
01 -
10 -
11 -

3. Using the inputs assigned in part a, draw arrows on the diagram in part-b corresponding to
the correct change in states

4. Complete the truth table given below containing five scenarios of the correctly implemented
FSM.
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Figure 1.18: Problem 3.3 State Diagram

CURRENT STATE INPUT NEXT STATE QUTPUT

TAKEOFF SEATBELTS + VIDEO

EMERGENCY

COLLISION COURSE

DRINKS SERVED

CRUISE CRUISE
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Problem 3 Solution

1. 000 Collision Course
001 Optimum Altitude
010 Not at Optimum Altitude
011 Destination in Sight
100 Obstruction
101 Obstruction Cleared
110 [n/a]
111 [n/a]

2. 00 Seatbelts + Safety Video
01 Drinks Served
10 Oxygen Masks
11 Seatbelts + Dimmed Lights

Figure 1.19: Solution for Problem 3.3

010 001

100 000, 011
CURRENT STATE INPUT NEXT STATE OUTPUT
TAKEOFF [001] CRUISE SEATBELTS + VIDEO
TAKEOFF [100] EMERGENCY [00]
EMERGENCY [COLLISION COURSE] | LANDING [10]
CRUISE [100] EMERGENCY DRINKS SERVED
3. CRUISE [001] CRUISE [01]
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Problem 4

Consider the traditional 22 - by - 3-bit Memory module previously discussed. Please refer to Figure
3.21 of the Introduction to Computing Systems textbook. What is an unintentional consequence
of replacing the 4 gates, which AND the WE bit with the output of the address decoder together,
with a direct signal from the WE bit? (Explain in 15 words or less)
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Problem 4 Solution

In the case where WE is 1, all other memory locations are also written over.

Explanation: This is because although the signal would be acceptable for the desired address loca-
tion, it would have effects on the other locations where we require a 0 to prevent reading or writing
to occur. An example of this can be seen when we have an A[1:0] of 11 and a WE of 1. The bottom
location will have correct results because the WE is a 1 and the ANDed result of the WE and the
output of the decoder is also a 1. The other three locations though will also receive 1s, which means
those registers will also output their values. This creates falsified results. The decoder output is
necessary for the memory to determine which location to write or read from.
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Problem 5
Determine whether the circuit in Figure 1.20 is correctly designed- that is, does it work for all pos-
sible input combinations of A and B?

Figure 1.20: The circuit for Problem 5

ouT




1.8. LOGIC PRACTICE PROBLEMS 25

Problem 5 Solution

The idea here is that when testing the validity of a transistor circuit, you are really looking to avoid
two things: short circuits and floating outputs. A short circuit exists when there is a direct path
from power to ground. A floating output is when the output is connected to neither the ground
nor the power. We say that we want NO path to ground when our output is high, but a path
to ground when output is low. Because voltage is defined as a potential difference between two
points, itis imperative that when our output is high, ground is 0 V so that there is indeed a potential
difference. If ground is +5V as well as output, then there is no potential difference, thus output
isn’t truly high. If output is low, it needs to be at 0V, and ground needs to be at 5V so that there is
a potential difference.

You see when A =0and B =0, OUT =1, and there is no path to ground, as the n-type transistors
out the bottom are low. When A =1 and B =1, OUT =0, and there is a path to ground. However,
we run into a problem when A =0and B=1, or A =1 and B = 0. In the first case, we see that on
top, output = 0, so we would expect there to be a path to ground, but there is not! In this case the
output floats. In the second case, the same is true therefore output floats. We are able to conclude
that this circuit is not properly built and does not work for all input combinations.
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Problem 6
Eight students were asked a true or false question. It read: “True or False: The capital of Texas is
Houston”. Clearly, the answer is false.

They were instructed to write their name on a sheet of paper and their answer- either a 1 or
a 0, to represent T/F respectively. We will use A-H to represent each student’s answer. Your job
is to build a mux such that you can effectively select a name and then look to the output to see if
the student answered the question correctly. An output of 1 means that the student answered the
question correctly, while an output of 0 means an incorrect answer.
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Problem 6 Solution

There are three select lines for the eight inputs (n select lines for 2fi inputs). The select lines are
fed into an AND gate that is a 1 precisely when that corresponding input is selected (What logical
function that does represent?). The input coming from each letter is the student’s answer. The
students answer is fed into an AND gate but is inverted so that, when it is selected, the second
AND evaluates to a 1 (if the student answered the question correctly). Each AND gate is then fed
into an OR gate, as is the case with any mux. With this design, the output is a 1 precisely when the
selected student answers the question correctly.
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Chapter 2

The Data Path

2.1 Vocabulary

Active High The signal is asserted with a logical 1. When we simply say a signal is “asserted”
without providing its assertion value, then we usually mean an Active High assertion.

Active Low The signal is asserted with a logical "0".

Address Control Logic Controls the input and output device registers. There are three inputs:
MIO.EN, R.-W, and MAR.

1. MIO.EN indicates whether a data movement from/to memory or I/O will occur.
2. R.W indicates load or store to memory location or I/O device
3. MAR: reference “Memory Address” Register below

Assertion The signal is “active”, though this does not necessarily mean the signal isa "1” or a '0’;
depending on the control logic, it can be either. An example of this is the R.W signal which
is ‘0’ when the program specifies a read from memory and "1” when a write is requested. In
either case, we can say that the R.W signal is “asserted” since we care about its value.

Bus A bundle of wires that is used to transfer data between units of the computer. What makes
the bus unique from other 16-wide wires is that the bus can have different sources and desti-
nations depending on the state of the machine. The bus in the LC-3 can only hold one 16-bit
value in any single clock cycle, therefore only one tristate buffer gate may pass data to the
bus in any given clock cycle.

Clock Cycle The unit of time that a computer remains in any state. The end of a clock cycle triggers
the transition from one state to the next in the LC-3’s Finite State Machine (FSM). At the point
of this state transition, the clock signal will move from its low state to its high state, and this
will enable new data to enter any register of the machine so long as the control signals enable
each specific register to be loaded. The clock signal is important because it is a global signal
that is singularly responsible for keeping the entire machine synchronized.

Control Unit The control unit is the driver for the LC-3’s state machine. At the beginning of each
clock cycle, the control unit provides all of the control signals to the entire machine. The
unique combination of control signals is completely dependent on the state of the machine.
For instance, when the computer is in state 18 (during the fetch phase), the control unit is
providing the same set of signals as it will any other time the computer is in state 18.

29
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Control Signals Control signals have a variety of purposes. They can select an input through a
muyx, control whether or not a register gets modified, determine what data gets gated onto
the bus, or specify what operation the logic block is to perform. Control signals are provided
by the control unit and drive all important events that occur in the LC-3.

Data Path The data path represents how all work gets done in the LC-3 at a low level of abstraction.
Specifically, it lays out how signals and data move through the machine. In order to achieve
a firm understanding of the data path, it is recommended that you trace all events in each

state. It would be good to have the state machine and data path documents handy when you
do this.

Finite State Machine A system that consists of a finite set of states, including the inputs, outputs,
and transitions for each of these states. The LC-3 has 49 states, each having a set of operations
that the machine executes during that state. There is no difference in what the computer
does between two instances of the machine being in the same state, except for the case of a
conditional branch.

Gate Controls when data is allowed onto the bus In the LC3, gates are represented by tri-state
buffers that control the output from a module to the bus. When the gate is “asserted” the
contents of the output module is loaded onto the bus. At any given time, only one gate can
be asserted. If more than one gate is asserted the value on the bus would be invalid.

Input/Output (I/O) External hardware is controlled by memory locations mapped to each device
(memory bound I/0O). This allows the programmer to read or write information to external
hardware by reading or writing to the memory address associated with that hardware. For
example, keyboard data can be read by interrogating the memory location that is mapped to
the keyboard inputs.

Instruction Cycle Step by step sequence that are processed in the distinct phases of each Instruc-
tion (for detailed information on the Instruction Cycle phases, reference page 104 of Patt’s
book).

“Interrogate” (in context of memory I/O)To read or write to or from the memory by putting rel-
evant values in the MAR or MDR and telling the memory subsystem to appropriately act
upon the data (depending on the asserted value of R.W).

Instruction Register Holds the actual instruction being executed. In the LC3 it is a 16 bit register
that contains the 4 bit op-code and 12 bit input that specify the source registers, destination
registers, and immediate values.

Interrupt An interrupt is an external event that stimulates the computer. This requires additional
hardware signals to interrupt the processor and supply it with a interrupt vector that pro-
vides an entry point in memory that will handle the interrupt. When an interrupt occurs,
the Interrupt Enable bit (IE) is asserted. Each interrupt is given priority, which corresponds
to the necessity of the event being dealt with in a timely manner. This means that when an
external event occurs its priority is compared to that of the current process, only if the inter-
rupt has a higher priority will it be executed. Note that this processes could also be an earlier
interrupt triggered service routine

Program Counter Is a register which holds the memory address of the next instruction.
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Memory Address Register (MAR) This register is loaded with the address of the memory loca-
tion in which the next memory access is going to touch. During reads, this register will spec-
ify the address of the data that is being accessed. During writes, it will contain the address
of the memory location in which the data is to be written to.

Memory Data Register (MDR) This register stores a value to be stored in memory or that has
been retrieved from memory. The LD.MDR signal controls when data can enter the MDR.
During a ST instruction, the MIO.EN signal specifies MDR to be loaded from the bus. During
a LD instruction the MIO.EN signal specifies the MDR to be loaded from memory. Note:
when MDR is loaded from the bus, it only requires 1 cycle. However, when MDR loads from
memory, it must wait until the READY bit is set. (Generally this takes 5 cycles)

Multiplexer (Mux) Selects one signal from many governed by the bits in the selector line(s). For
example, a 2 bit mux can select 1 of 4 lines, in general, the number of alternatives that can be
chosen is equal to 2 number of bits in the selector line(s)

Opcode A sequence of bits (four on the LC3) which specify which instruction to carry out. Instruc-
tions are stored in the non-volatile portion of computer memory (ROM) and are decoded by
the microcode in the structure labeled CONTROL. Most of the work the Decode structure
does is out of the scope of EE306.

Operand The twelve bits that follow the Opcode which determine what data to act upon (which
register or immediate value to store, load, add, etc).

Processing Unit A component of a computer architecture which processes data controlled by con-
trol signals. A simple example of a processing unit in the von Neumann model is the ALU.
In the LC3 the ALU recieves input signal from the control store that designate ADD, AND,
and NOT operations.

Steering Bit Sometimes instructions are specified with different modes which cause the instruc-
tion to act differently according to the value of the steering bit. In the case of the LC-3, steering
bits are used to specify what operating mode the operands will take in binary operations such
as ADD and AND.

von Neumann Machine A computer architecture which consists of five components: memory, a
processing unit, input, output, and a control unit. Programs and Instructions are both stored
in memory. The design of the LC-3 is based on the von Neumann architecture. Note: The
only way to turn on the computer after it has received a HALT instruction is via external
control (such as a power button).

2.2 Introduction to the Data Path

2.3 The Data Path Explained

The Data Path diagram is a top-down view of all of the LC-3’s components. Understanding the
data path requires an understanding of exactly how each instruction is carried to execution. The
best way to do this is to trace the movement of data at each state of the machine. You may be asked
to determine a set of control signals that are asserted at any state of the machine. It is important
that you keep in mind what control signals must be asserted in each state in order for the event
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specified by the stat machine to occur. For instance, if you see that the PC is loaded in a certain
state, it is evident that the LD.PC signal must be asserted. Before we delve into the specifics of
the state machine, it is important that you understand one critical distinction: combinational and
sequential logic.

Combinational logic consists of all gate paths that do not take the clock signal into considera-
tion. In terms of the LC-3 datapath, combinational logic consists of everything that is not a register.
At the beginning of each clock cycle, new values that have just been applied to the system registers
(PC, MAR, and the general purpose registers) stimulate the combinational circuitry of the machine,
regardless of whether or not the result of that logic is important to the execution of the instruction.
For instance, in a state where the PC is being gated onto the bus and sent to the MAR, the ALU is
still taking inputs and generating an output. These inputs may be garbage values that add nothing
to the execution of the load instruction. It doesn’t matter though since the value of the ALU in this
instruction is thrown away when the gateALU signal restricts the output from being put on the
bus. In a way, combinational logic is constantly producing outputs that may or may not be used to
update the state of the machine.

Sequential logic in the LC-3 is primarily comprised of the system registers and a few constructs
in the Control Block. Sequential logic is responsible for all state transitions in the machine and it
is all tightly coupled with the clock signal. Unlike combinational logic which gets updated nearly
instantaneously when inputs change, sequential logic is only updated at a clock cycle transition.
The point is that the LC-3 has a very specific set of tasks to do each cycle, and this is driven by the
combinational and sequential circuitry working in lockstep. At the beginning of each cycle, new
values get latched into registers and the control block provides a new set of control signals based on
the new state of the machine (sequential logic), then everything else in the machine evaluates these
new inputs and dumps the result onto a wire that goes into a register. However, that output must
wait for the end of the current clock cycle before it can update the register and start the process
over again.

2.4 Highlights of the Data Path

Each latched element only latches in new data at the end of the clock cycle. This has some very
profound effects which, if not understood, can lead to much confusion. For example, during the
Pre-Instruction phase (basically Fetch and Decode; the first three stages on the LC3’s Finite State
Machine diagram), the PC is gated onto the bus but the LD.PC signal is asserted and the PCMUX
is set to allow PC <- PC+1 (see Figure 2.1).

Which value of the PC appears on the bus? The answer has to do with the nature of a latch
itself. Latches only store a new value at the end of a clock cycle. Therefore, the PC pushes its
current value on the bus and adds one to value on the PC input wire at the same time, but the
incremented value of the PC is only stored at the positive edge of the clock. All the other elements
receive the original value of the PC until the next cycle.

Remember that during each instruction cycle, all of the data paths are always active even though
our drawings may not explicitly illustrate every one of them. The control signals govern the prop-
agation of these signals, preventing them from interfering with the data that we care about. In
short, the arrows with black heads on the data path illustrate paths that are always active; the
small arrows with white heads illustrate control signals that change the flow of data through the
multiplexers (these are also always active, but their signals are usually blocked off by a gate to
prevent them from interfering with the data we care about); and the large equilateral white trian-
gles illustrate gates (tri-state buffers) which block signals from passing through unless they have a
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Figure 2.1: Example of a potentially confusing situation which illustrates the importance of the
understanding of latches

signal to explicitly allow the transfer of signals. The values of these gates always matter, for they
restrict access to the bus which can only handle one 16-bit value in each clock cycle. There will
be situations where we do not care if data is allowed to flow through control structures (the small
white triangles), but we always care about what is allowed on the bus by the gates (the large whie
equilateral triangles).

2.5 LC-3 Instructions

2.5.1 The Pre-Instruction: Fetch and Decode
State 18 Signals Asserted:

e GatePC

e LD.MAR

e LD.PC

e PCMUX (Select PC+1)

Explanation: The value of PC does several things at once: The current value of the PC is
gated onto the Bus while the LD.PC signal is asserted and the PCMUX is set to load PC+1
into the PC. All this happens at once, but the value of PC is not changed until the positive
edge of the clock cycle, meaning that the Bus is given PC during the entire clock cycle but at
the end of the cycle, PC+1 is eventually latched into the PC. When the value of the PC is on
the Bus, it becomes latched in to the MAR since the LD.MAR signal is asserted. This implies
that we're going to load from memory the address that the PC contains.

State 33 Signals Asserted:
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e MIO.EN
e INMUX (Selects the line from MEMORY)
e LD.MDR

Explanation: Now that the MAR has the value of the block of memory that we want to load,
we do the relevant processes to load from the memory: The value from the MAR flows into
the ADDRESS CONTROL LOGIC and the MEMORY blocks. The MIO.EN, MEM.EN, and
R.W signals are asserted to enable memory access and read / write capabilities. Notice that the
R.W line goes into both the ADDRESS CONTROL LOGIC and the MEMORY units. Memory
can take multiple CPU cycles to retrieve the data, so we loop in this state until we detect the
R signal asserted from the MEMORY unit (this is indicated on the LC3’s FSM as a loop with
R-bar, indicating that we want to loop as long as R is not asserted). As long as the MIO.EN
and LD.MDR signals are still asserted during these loops, we can be assured that we’ll get the
value from the memory into the MDR eventually since this forces the data from the memory
to flow into the MDR during the loops.

State 35 Signals Asserted:

¢ GateMDR
e LDIR

Explanation: Now that we finally have the value of MEM[PC] into the MDR, we now have
to push it into the IR to actually execute any instruction that is contained in the MDR. We
activate the GatePC, which pushes the value of the MDR onto the Bus. Since LD.IR is also
asserted, the value of the MDR (which is currently on the bus) is pushed into the IR and is
finally latched in.

State 32 Explanation: This is the Decode instruction where the machine moves to instruction-

specific states based on the J” bits in the control logic. For more information about the 'J’
bits, refer to page 473 of Patt’s textbook (Appendix C.4). The structure of the control logic is
outside the scope of this course, and the signals that are asserted on the FSM do not need to
be scrutinized due to this consideration (the BEN signal, for example, is listed on the State
Diagram but does not appear on Data Path; don’t worry about this). For the remainder of
this document, we will refer to the instructions specified by the state branched off from this
state (state 32). For example, if we encounter an ADD instruction, then the next state will be
state 1 branched off from state 32.

2.5.2 The ADD Instruction

The ADD instruction has two types of operation modes. The first operation mode takes two source
registers and stores the value to a destination register. The second operation mode takes one source
register and one immediate sign-extended value taken from IR[4:0]. The source registers provide
the data to the ALU the output from the ALU is stored in the destination register. Both values are
sent to the ALU and the result is stored in the destination register. To distinguish between the two
modes, IR[5] is used as a steering bit: If IR[5] is 1 then the ALU uses one source register and a sign
extended immediate value, otherwise the instruction uses two source registers.

State 1

Signals Asserted with IR[5]=1
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Figure 2.2: Data flow of the Prelnstruction
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e SR2Mux
e ALUK
e GateALU

Signals Asserted with IR[5]=0

e SR2Mux
e ALUK
e GateALU

Explanation: The SR1 value is selected and sent to ALU A and SR2 mux selects for either
the immediate value or SR2 and sends it to the ALU B. ALUK is then set to 00 (00 is ADD,
01 is AND, 10 is NOT, 11 is pass value). Then, GateALU is asserted which allows the result
from the ALU onto the system bus. Finally, the DR selects from the IR bits that specify the
destination register and the value is taken from the bus and put into the register file.

2.5.3 The JMP Instruction

The JMP instruction allows the programmer to change the PC so that in the next cycle, the program
will continue at the address specified. The JMP instruction can be implemented two different ways;
it is possible that one path is more efficient than the other. The object of this instruction is to load
the PC with the value in a specified base register (IR[8:6]). One possible way to achieve this is to
drive the base register value out of SR1 onto the bus by setting the ALUK to pass the value in “A”.
Now that the bus contains the value of the base register, the PCMUX would accept the value from
the bus and the LD.PC would be asserted to accept the new address. As an alternative, the base
register would come out of SR1 and be selected by the ADDRIMUX. ADDR2MUX can be selected
to choose one of two things: it can pass the value 0’ or it could pass the sign extended bits of IR[5:0]
which, if you will notice, will always be 0 for the encoding of this instruction. The adder would
add the base register with 0, leaving its value unchanged, and would pass it to be selected by the
PCMUX. Similar to the previous path, the LD.PC signal would assert and load the new PC value.

State 12:
Signals Asserted: The ALU Path
e LD.PC
ALUK
GateALU
PCMUX
SRIMUX! (Selects IR[8:6])

Signals Asserted: The ADDR1IMUX Path

e SR2MUX
SRIMUX! (Selects IR[8:6])
ADDRIMUX
ADDR2MUX

LD.PC
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¢ GateMARMUX
e PCMUX

Explanation: The SRIMUX! selects the register for the base address and the ADDRIMUX
selects the SR1 line. The ADDR2MUX chooses the imemdiate 16 bit zero value or the SEXT
(Sign Extended) IR[5:0] value. Finally, the GateMARMUX asserts and the value is loaded
onto the bus. After the value is on the bus, the LD.PC asserts and the PC is loaded with the
location that the JMP instruction wants to go to. In the ALU Path the ALU is set to PASS
VALUE and the base register is propagated to the Gate ALU which asserts and puts the value
onto the bus. From there just like through the ADDRIMUX path, the PCMUX selects for the
bus line and the LD.PC allows the PC value to change to the JMP location.

2.5.4 The STI Instruction

The STI instruction is a store instruction that accesses memory twice. In fact, it is the only store
instruction that actually performs a load from memory (in addition to a write to memory). The
following will break down the STT instruction into three parts. First, an initial address will be
calculated by adding an offset to the PC. This first step is like a regular LD; memory is interrogated
and a value retrieved. However, the value retrieved is an address where the value in SR will be
stored to. The next step is to return this value fetched out of the MDR into the MAR. Finally, the
desired value is placed in the MDR, the memory access is initiated, and ithe value is stored at
M[MAR].

State 11 Signals Asserted:

* MARMUX (Selects the output of the “+” structure)
GateMARMUX

ADDRIMUX (Selects PC)

ADDR2MUX (Selects SEXT of IR[8:0])

LD.MAR

Explanation: The value of the PC and the sign-extended value of IR[8:0] (PCoffset9) are first
added and pushed on the bus where it is loaded into the MAR. This will prepare the machine
to load the value contained within PC + PCoffset9 from memory.

State 29 Signals Asserted:

e R.W (Active Low?)

MIO.EN

MEM.EN

INMUX (Selects the line from MEMORY)
LD.MDR

'This structure does not exist on the Data Path, but within the LC-3 it selects between providing IR[11:9] or IR[8:6] to
the SR1 line. This is normally only used on instructions which provide a 9-bit offset to the instruction so that the machine
can load DR, which only exists in IR[11:9], and send it to the ALU. This contrasts most instructions which usually have
SR1, which is normally located in IR[8:6], load and flow into the ALU. Don’t stress upon this structure, as it is one of the
small internal details of the LC-3 which need not be overly scrutinized.
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¢ Wait for R (asserted by memory when the memory read is finished)

Explanation: At this point we are loading from memory. The MAR, MIO.EN and MEM.EN
control structures are asserted, and R.W is set to Active Low to specify a memory read?. The
Address Control Logic block tells the INMUX to select the value coming from memory and
push it into MDR by way of the MIOMUX?, and the LD.MDR signal is asserted to allow the
incoming value to overwrite what is currently in the MDR. Since memory access can take
many cycles, the machine waits until the R signal is asserted to continue to the next state.

State 31 Signals Asserted:

¢ GateMDR
e LD.MAR

Explanation: This is a very simple step: The machine moves the value within the MDR into
the MAR to read from the address specified by the data which was just read from memory.

State 23 Signals Asserted:

¢ GateALU

¢ MIO.EN (Active Low; Selects the value on the bus)

* LD.MDR

e SRIMUX (Selects IR[11:9])
Explanation: The machine moves the value within SR onto the bus by asserting a “Pass-thru”
signal in the 2-bit wire labeled “ALUK”. This allows the value within SR to be gated directly
on the bus. MIO.EN is asserted to Active Low and LD.MDR is asserted to allow the value

on the bus to be pushed on the MDR. The machine is now ready to store the value within SR
(now within MDR) into the address specified by the MAR (PC + PCoff9).

State 16 Signals Asserted:

e MIO.EN

e MEM.EN

* R.W (Active High?)

e Wait for R
Explanation: At this point the contents of the MDR (SR) go into the memory address spec-
ified by the MAR (PC+PCoff9). The logic knows to do this because R.W is set to an Active

High signal, specifying a write to memory. The machine waits until R is asserted to indicate
that the write was successful and the memory subsystem is ready for another operation.

*R.W Active High specifies a Write while R.W Active Low specifies a Read
SMIOMUX doesn’t actually have a label, but it is just below the MDR and has a MIO.EN signal to pass either the
value on the bus or the output from INMUX into the MDR.
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2.5.5 The TRAP Instruction

The TRAP Instruction performs service routines for specialized memory operations. The TRAP
Vector table in your book will specify each value and its function. In general, the TRAP instruction
controls input and output from peripheral devices (namely the keyboard and console for the LC-3)
and also services the "HALT" instruction.

State 1 Signals Asserted:

¢ MARMUX (Select the ZEXT of IR[7:0])

¢ GateMARMUX

e LD.MAR
Explanation: First, the value from the IR is zero extended (ZEXT), passed through MARMUX
and allowed on the bus by the GateMARMUX. Then, the LD.MAR signal is asserted allowing

MAR to load the contents off the bus. The contents specify the TRAP Vector that corresponds
to a specific system call subroutine.

State 29 Signals Asserted:

R.W (Active Low?)

M.EN

INMUX (Selects the line from MEMORY)
LD.MDR =1

Wait for R

Explanation: Many operations happen at the same time in this state: The contents of the
MAR specifies the address corresponding to the particular TRAP Vector. R.W, MIO.EN are
asserted and the Address Control Logic unit produces a 2 bit value for the INMUX to se-
lect the output line from MEMORY. Memory[MAR] is read and waits until the R signal is
asserted. After the memory has been read and R is asserted then the data at the memory
location is loaded to MDR. At the same time the GatePC is asserted, pushing the PC value to
the bus. The DR signal loads the PC value to R7 which will specify the return address after
the system call is serviced.

State 30 Signals Asserted:

¢ GateMDR
e PCMUX (Selects the line from the bus)
e LD.PC

Explanation: To finally execute the service call, the GateMDR is asserted, allowing the data
from MDR, which specifies the address of the service call, to be loaded onto the system bus.
The PCMUX selects the bus line and the LD.PC is asserted so that PC contains the address
of the service call from the bus. In the next state, the program will run the service routine
specified by the address in the TRAP Vector table, which is now in the PC.



Chapter 3

Programming Primer

3.1 Introduction

A significant part of EE306 and Computer Engineering is programming - being able to dissect a
problem statement and then teach a computer how to solve it. In the following section, we go
through several LC3 example programs to illustrate the proper mindset while programming, both
in general and in assembly in particular. We also guide you through several common types of
exam problems that relate to programming - the “What Does This Program Do” and the “Fill In
The Blanks” problems.

The important thing to note here is that these specific problems and solutions don’t matter
much - the thought process necessary to obtain the answer is key. Furthermore, it’s impossible to
learn how to program just by reading. If you are struggling, or even if you think you aren’t, the
only way to get better is to practice.

3.2 Program1

Learning how to program is best done with examples. Thus, let’s begin by describing a general
outline that all programs follow in the context of an example. Take a simple program that takes
two numerical inputs from memory, adds them, multiplies the sum by 3, and stores the result
somewhere back into memory.

This specification can be described by a simple algorithm: Output = (Inputl + Input2) * 3. All
programs have an underlying algorithm, though not all can be described as mathematically as
this one. For example, the algorithm for the Character Count program described in the book is:
Count the number of instances of INPUT1 (a character) in INPUT2 (an array of characters). Output
= Instances of INPUT1 in INPUT2. Though this step may seem trivial, as we are simply writing
down the problem’s words in a more mathematical notation, it’s an important step to resolve any
ambiguities and to clearly see what you are asked to do.

In addition, all programs contain the following parts:

1. Initialization (Get ready to do the important stuff)
2. Processing (Do the important stuff, the equation)
3. Finish (Clean up loose ends)

Initialization
The initialization phase has two key tasks that it must complete:

43
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1. Receive any user inputs
2. Place any necessary data (either user inputs or predetermined values) in either registers or
in memory, whatever is easiest for the processing phase to retrieve.

Examples of things to complete during initialization include creating counters for loops, load-
ing addresses of where values are stored in memory, and zeroing out the register in which the
output will be stored. The initialization phase can be broken down further. Let’s examine this
process in the context of our sample program.

First, define the data that you need in this program, including intermediate values. For our
program, you will need the following values:

1. INPUT1
2. INPUT2
3. Sum

4. Output

Knowing what values you need is not enough. The next step is to initialize registers for these
values. We do these by loading registers with the appropriate values.

1. Load INPUT1 into Register 0

2. Load INPUT2 into Register 1

3. Load 0 into Register 2 as the initial value for the sum

4. Load 0 into Register 3 as the initial value for the output

Luckily, these operations can each be carried out with a single LC3 instruction. Assume that
INPUT1 and INPUT?2 are stored in memory locations with the appropriate labels. Here is the LC3
code for this section:

.ORIG x4000

LD RO, INPUT1
LD R1, INPUT2
AND R2, R2, #0
AND R3, R2, #0

Here, we assumed that the inputs are stored in memory locations. In general, the initialization
step may need to be decomposed further. For example, to load from the keyboard, you need to
convert from ASCII to decimal representation. To load from other input devices, you may need to
do something else. That concludes the initialization phase.

Processing

The processing phase is the most varying part of programs. It takes what you set up in the ini-
tialization phase and acts on it to meet the specifications of the problem statement. The key is to
follow the algorithm you set up.

Output = (Inputl + Input2) * 3

First break up this algorithm into its logical parts, as you would if you were calculating the answer
by hand. The first part can be described by:
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Sum = (Inputl + Input2)
Now, replace these abstract values by their representations in the LC3:
Register 2 = Register 0 + Register 1.

Luckily, there is an opcode that does this exact thing.

ADD R2, RO, R1

Once you debug this addition, you no longer have to worry about Inputl and Input2. From now
on, you can directly work with Sum. Though this step is trivial for this program, modular program-
ming (programming in parts, with each part being debugged separately) will be important for any
significant program. Now, take the next part of the algorithm :

Output = Sum * 3
Again, replace this algorithm by its representation in the LC3:
Register 3 = (Register 2) * 3

However, now we run into a problem. The LC3 does not have a multiply opcode. You must
therefore take a step back and break down the algorithm further.

Qutput = Sum + Sum + Sum.

Unfortunately, no opcode exists to add 3 values at once. So break down the algorithm further,
defining new intermediate values where needed.

Sum_intermediate = Sum + Sum
Output = Sum_Intermediate + Sum

Both these steps can be carried out with the available opcodes. Now, represent them using
registers. It is OK to use Register 3 to temporarily hold SumIntermediate.

Register 3 = Register 2 + Register 2
Register 3 = Register 3 + Register 2

Translating to LC3 code is now trivial:

ADD R3,R2,R2
ADD R3,R3,R2

Register 3 now contains the output of the program, as we wanted all along. That concludes the
processing phase.

Finish

Now to write the finish phase.

In this program, we store the output in the memory location labeled ‘OUTPUT.” For this, we
allocate 1 memory location for the output below our code, and label it ‘OUTPUT.” Any program
that wants to read our solution and do something with it can read that memory location.

Storing a value in a memory location can be done in one line:
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ST R3, OUTPUT

We are now done with this program. Here is the complete program:

.ORIG x4000
LD RO, INPUT1
LD R1, INPUT2
AND R2, R2, #0
AND R3, R2, #0
ADD R2, RO, R1
ADD R3,R2,R2
ADD R3,R3,R2
ST R3, OUTPUT
HALT

INPUT1 .FILL #5 ;the input for this program is trivial. In reality , input will rarely
be hardcoded

INPUT2 .FILL #20

OUTPUT .BLKW 1

.END

With those inputs, the output is ‘K.” Looking up ‘K’ in the ASCII table, we see that it corresponds
to the decimal value 75. Test the program with some other values to verify its correctness. Congrats,
you have finished this (admittedly easy) program. The key is to remember that you can and should
follow this same method for every program you write.

Now, let’s go through the same process with a harder program.

3.3 Program 2

Given a word stored in memory location x3000 swap each nibble of the high byte and the low
byte and store the swapped number into memory at x3001. For example if x3000 contained x3CF5,
x3001 should contain xC35F.

In this section, we will give you a higher level description of each step in the algorithm. You
should practice breaking down these descriptions into manageable bites that you can directly trans-
late into code.

We will use the following algorithm to solve this problem. If you can think of a different one,
great! Write the program, then compare outputs with our version.

Load your number from memory into two registers (initialization)

Isolate the low nibbles of high and low bytes of your number in one register using a mask
Shift left four times by adding number to itself four times keep in register

Isolate high nibbles of high and low bytes of your number in the other register using another
mask

Shift right four times by dividing number by two four times by using the counting method
6. Add the two numbers together and store back into memory

Ll .

o

If you didn’t understand the above algorithm, don’t worry. Let’s look at each part individually,
as we did for the previous program.
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Initialization

Our first step, initialization, consists of receiving any user inputs and placing any necessary
data (either user inputs or predetermined values) in either registers or in memory, whatever is
easiest for the processing phase to retrieve.

Seeing that we have no need for user input our initialization will consist of placing our necessary
data into registers and memory. But what is the necessary data? To find that out let’s take a look
at our problem and our algorithm.

We will need to reserve two registers to hold our final shifted numbers. And we will need
a counter of four to keep track of how many times we have shifted we will also need the masks
(xOFOF and xFOFO) to isolate the low and high nibbles of each byte and a register in which to store
them. Also, since our method of shifting left destroys our original value we will need a register to
hold our number each time we shift it left.

Here is the initialization:

.ORIG x4000

LDI RO,LOCATION ;initialize two registers to hold shifted values
LDI R1,LOCATION

LD R3, COUNT ;R3 has counter for shifting right

AND R4,R4,#0 ;clear register to hold new shifted right value

And at the bottom of our code we have our masks, counter, and locations we want to get and
store our data into:

LOCATION .FILL x3000
FINISHED .FILL x3001
COUNT .FILL x0004
MASK1 .FILL x0FOF
MASK2 .FILL xFOFO

Processing

Our second step processing comprises the bulk of our algorithm:

1. Load your mask

2. Isolate the low nibbles of high and low bytes of your number in one register by ANDing your
number and the mask

3. Shift left four times by adding the number to itself four times keep in register

So we know that shifting left is the same as multiplying by 2 and when we multiply a number
by two we are essentially adding the number to itself so shift left four times becomes:

1. Add number to itself
2. Add number to itself
3. Add number to itself
4. Add number to itself

In LC3 Assembly, the first part of the processing is represented as:
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LD R2,MASK1

AND RO,R0,R2 ;mask and shift left four times

ADD RO,RO0, RO

ADD RO,R0, R0

ADD RO,R0, R0

ADD RO,R0,RO ;RO has shifted left four times number

Following our pattern of breaking down each step into smaller pieces, let’s break down the
second part of the processing phase. As a reminder, here is what we want to do in this part:

1. Load your other mask

2. Isolate high nibbles of high and low bytes of your number in the other register by anding
your number and the mask

3. Shift right four times by dividing number by two four times using the counting method

At this point, you should rightfully be asking yourself what the counting method for right
shifting is. Let’s try to understand that now.

So if shifting left is multiplying by 2 then shifting right can be represented as dividing by 2.
This gets a little trickier, so let’s think what happens when we divide a number by two. One can
think of dividing a number by two as counting how many 2’s there are in the number or how many
times you can subtract two from the number before you get to 0 or negative. So for instance 8/2
can be computed by:

8-2=6 (count=1) 6-2=4 (count=2) 4-2=2 (count=3) 2-2=0 (count=4)
Thus 8/2=4. Or in binary 1000 (8) shifted right is 0100 (4).

What does this look like in Assembly? At this point, try writing the code yourself before looking
at the answer. Once you're done, come back.

LD R2, MASK2

AND R1,R1,R2 ;mask

BRZ DONE2 ;if the masked number to start with is x0000 then you are done

SUB ADD R1,R1,#-2 ;shifting right

BRZ DONE ; if number is x0000 the you have shifted right once. You have subtracted 2 X
number of times. X is thus your initial value divided by 2 and is stored in R4 (
actually , X-—1 is stored in R4. Why?)

ADD R4,R4,#1 ;if your number is not 0 then you haven’t finished the shifting process

BRNZP SUB ;continue subtracting

DONE ADD R4,R4,#1 ;you branched before you counted the last time you subtracted so you
need to add one to R4. Now, R4 is equal to X.

ADD R1,R4,R1 ;R1 has the shifted value now

AND R4 ,R4,#0 ;clear R4 to hold next shifted value

ADD R3,R3,#—1 ;decrement counter because we need to shift right four times

BRP SUB ;branch if your counter is not yet at zero

DONE2 ADD RO,R1,R ;if you are done shifting right add RO (nibbles shifted left) and Rl

;(nibbles shifted right) RO has result

Finish

Now that you have your swapped number in RO all that there is left to do is store that number
back into memory at x3001!
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STI RO, FINISHED
HALT

We are now ready to combine all of our pieces:

.ORIG x4000

LDI RO,LOCATION ;initialize two registers to hold shifted wvalues

LDI R1,LOCATION

LD R3, COUNT ;R3 has counter for shifting right

AND R4 ,R4,#0 ;clear register to hold new shifted right value

LD R2,MASK1

AND RO,R0,R2 ;mask and shift left four times

ADD RO, R0, RO

ADD RO,R0, R0

ADD RO,R0, R0

ADD RO,R0,R0O ;RO has shifted left four times number

LD R2, MASK2

AND R1,R1,R2 ;mask

BRZ DONE2 ;if the masked number to start with is x0000 then you are done

SUB ADD R1,R1,#-2 ;shifting right

BRZ DONE ; if number is x0000 the you have shifted right once. You have subtracted 2 X
number of times. X is thus your initial value divided by 2 and is stored in R4 (
actually , X—1 is stored in R4. Why?)

ADD R4,R4,#1 ;if your number is not 0 then you haven’t finished the shifting process

BRNZP SUB ;continue subtracting

DONE ADD R4,R4,#1 ;you branched before you counted the last time you subtracted so you
need to add one to R4. Now, R4 is equal to X.

ADD R1,R4,R1 ;R1 has the shifted value now

AND R4,R4,#0 ;clear R4 to hold next shifted value

ADD R3,R3,#—1 ;decrement counter because we need to shift right four times

BRP SUB ;branch if your counter is not yet at zero

DONE2 ADD RO,R1,R ;if you are done shifting right add RO (nibbles shifted left) and Rl

;(nibbles shifted right) RO has result

STI RO, FINISHED

HALT

LOCATION .FILL x3000
FINISHED .FILL x3001
COUNT .FILL x0004
MASK1 .FILL x0FOF
MASK2 .FILL xFOFO
.END

3.4 Program 3: The State Machine

Another common type of program is the implementation of a finite state machine. You can find
the details of and uses for a finite state machine in your textbook or online. Most basically, a FSM
is defined by a group of states and textittransitions between those states.

You should have already been introduced to a FSM as a hardware design tool, as in the state
machine for the LC3. A state machine is also a good algorithm design tool that can be implemented
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Figure 3.1: A basic State Machine
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in software to design a real world system with states and transitions between those states.

An FSM software controller is an elegant solution with no branch statements and comparisons.
We do not expect you to come up with it yourself, so we provide the solution below. Your job is to
understand it and be able to implement it for any given system.

The thought process here is that it’s better to write and understand this controller solution once
than to rewrite a program each time your state machine design changes slightly. Furthermore,
staying away from branch statements is great for several reasons. First, it increases the runtime
performance of the program. In a real world system, like a traffic light system, performance is
everything. Furthermore, the fewer branch statements that a program has, the easier it is to verify
that it is correct.

A program that implements a FSM is easy to understand and extend and always follows the
same pattern. In the following example, we will implement a Moore Machine, in which the output
is a function of only the current state. (A Mealy machine’s output is a function of the current state
and current inputs, and is not used in this course. You will learn more about these machines in
future courses).

A state machine program has two main parts: a data structure that defines the state machine
and a controller. Each iteration of the controller loop represents the handling of a single state. The
controller outputs the current state’s output, inputs data, and transitions to the next state. We'll
go through the state machine code using the following state machine diagram: Here is some LC3
code that implements the state machine in Figure ??. Remember, the solution below is not the only
way to design the system, but it is one of the best.

.ORIG X4000
;initialization code — preparation for statemachine loop
LEA R2,STATEO ;loads address of initial state into R2.

FSMController
LDR RO, R2, #0 ; loads into RO the output of the current state
LD R3, digitasciiadd
ADD RO,RO, R3 ; integer to ascii conversion
ouT ;output what is in RO
IN ;load input
LD R3, digitasciineg
ADD RO,R0, R3 ; ascii to integer conversion

ADD R2,R2,#1 ;add input to R2 (also add offset to next state array)
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Figure 3.2: Another basic state machine

-

Let’s start breaking this program from the end. The data structure defines the FSM. This FSM has
3 states.

Each state, in this example, has 2 parts: an output value and an array of pointers to the next
state. For a Mealy machine implementation, simply change the output value into an array, with 1
output value corresponding to each input value.

To add another state, just add another State structure to the end. For example, consider the
challenge of changing our structure to match the following diagram: Change the State2 structure
to:
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Figure 3.3: The state machine in ?? modified slightly

And add State3:
STATE3 .FILL #5 ;output for state3

.FILL STATE2 ;next state for input = 0
.FILL STATEO ;next state for input = 1
.FILL STATE2 ;next state for input = 2

That is the magic of a FSM implemetation: To represent a different FSM, there is no need to rewrite
the controller code. One just has to change the State data structure.
Next, let’s break down the code that runs the machine.

ORIG X4000 ;initialization code — preparation for statemachine loop
LEA R2, STATEO ;loads address of initial state into R2. R2 will keep track of the
current state.

We'll need to keep track of the current state each iteration of the controller code. Let’s use a register
to hold the address of that state. Throughout the program, R2 holds the address of the current state.
The above code initializes State0 as the first state.

Let’s examine the first part of the FSM controller:

FSMController
LDR RO, R2, #0 ; loads into RO the output of the current state
LD R3, digitasciiadd
ADD RO,RO, R3 ; integer to ascii conversion
ouT ;output what is in RO

The #0 is the offset for the output of the current state from the beginning of the current state.
We need an offset because R2 holds the address of the current state. This state has multiple parts:
an output and an array of addresses to the next state. The offsets are the difference between the
beginning of the state and the beginning of each part. If the output in the structure was located
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after the pointer array, the offset would be changed to #3. Usually, the offsets are defined using
variables, but we directly include it here for simplicity.

The rest of the code outputs the output for the current state onto the screen and waits a specified
amount of time. Let’s finish with the 2nd half of the controller:

IN ;load input
LD R3, digitasciineg
ADD RO,R0, R3 ; ascii to integer conversion
ADD R2,R2,#1 ;add input to R2 (also add offset to next state array)
ADD R2,R2,R0 ;R2 is now holds the address of the address of the next state
LDR R2,R2, #0 ;R2 now points to next state
;loop to FSMcontroller
BRNZP FSMController

We first load the input from the keyboard. This input will determine the next state as defined by
the state diagram. We add the offset (#1) to state array from the beginning of the state. R2 now
holds the address of the beginning of the next state array for the current state. We then add the
input to this value. R2 now contains the address to the correct index of the state pointer array. The
next opcode, LDR, loads the value at that address, which is itself the address of the next state.

After understanding the program, run it in the simulator. Observe that the first output is 0, the
output of our initial state, State0. Now, type in numbers and see how the next output corresponds
to the correct state in the state machine, defined by the old state and the input.

Note that there are various ways to extend this program, like ensuring that the input is valid
(there is a transition defined for that state and input), and changing the state diagram. You should
try these out to gain a better understanding of software state machines.

3.5 Fill in the Missing Instructions Type Problems

One type of programming question you're sure to encounter is the fill-in-the-blank question. These
questions will give you a program in which certain lines or parts of lines are left blank for you to
fill in based on the purpose of the program. Here’s an example from an old exam:

In Problem set 5, you were asked to write the subroutine BIN GET which inputs a binary number entered
from the keyboard and stores the zero extended value into R0. The program below calls the subroutine
MOD_BIN_GET which in addition to storing the zero extended value in R0, also stores the total number of bits
entered into R1. For example, if the user types 10010, RO would contain 0000000000010010, and R1 would

contain the value 5. Assume the user types from 1 to 16 binary digits.

After calling the MOD_BIN_GET subroutine, the program below sign extends the value that the user entered
from the keyboard and stores the result in R0. However, a few instructions have been left out. Your job:
complete the program. Note: Each box corresponds to 1 missing instruction.

.ORIG x3000
JSR MOD_BIN GET

ADD R2, R2, #1 ; R2 = 0000000000000001

NOT  R3, R2 ; R3 = 1111111111111110
LogpP ADD  Ri, Ri, #-1
BRz  DONE

ADD R2, R2, R2

BRuzp LOOP
DONE |

BRz  SKIP
ADD RO, RO, R3
SKIP HALT
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The first step is to read the problem description and locate the purpose of the program. Here,
we learn that we want to store a sign-extended keyboard input into R0. Our program calls MOD_BIN_GET
which takes an input — a binary number — from the keyboard and does two things: 1) stores the
zero-extended input into R0; 2) stores the number of bits in the input in R1. As the problem tells
us, we may assume the user types 1 to 16 binary digits, relieving us from having to deal with too
many bits or an incorrect input.

The next step is to look at the program and figure out what it’s already doing without the lines
we have to fill in. We see that R2 contains x0001 and R3 contains xFFFE. Since the third line of our
program adds 1 to R2 with the result being R2 containing x01, we know that R2 must contain x00
before this line. Remember, you cannot assume the initial value of R2 when the program starts. It
most likely contains junk content. Thus we know we must clear R2 in the first blank:

AND R2,R2,#0

We now get to the main LOOP of our program. We notice that we exit LOOP when R1 becomes 0,
and we know R1 contains the number of bits in our binary input, so we’ll run through LOOP as
many times as there are bits in our input. We then left-shift R2 (Adding a number to itself is the
same as left-shifting it. There are many such patterns/instructions that correspond to common
programming necessities. Practice is the key of recognizing these patterns). Then we do some-
thing, and then go back through LOOP. What do we do after left-shifting R2? At this point, it’s not
clear what we do with R2, but we should move on and hope that it makes more sense later on.

After finishing with LOOP, we do something; if that something results in anything except a
zero, our program is finished. However, if that something yields a zero, then we add R3 to RO
and store the result in R0. Remember, the goal of the program is to leave R0, originally containing
the zero-extended input, with the sign-extended input. And remember that R3 originally contains
1111111111111110. Zero-extension means adding all zeros to the front end of a number, regardless
of its sign (high bit). Sign-extension means adding 1s to the front end of a negative number (high
bit is 1) and 0s to the front end of a positive number (high bit is 0. If we want to sign-extend a
zero-extended positive number, we don’t need to change anything; if we want to sign-extend a
zero-extended negative number, we only need to change all the leading Os into 1s. This can be
accomplished through adding, which is exactly what this program does. That second-to-last line —
ADD RO,R0,R3 — makes a zero-extended negative number into a sign-extended negative number.
Thus it is clear that the blank with label DONE checks whether our number is positive or negative.
This check yields a zero if our result is positive and something nonzero if it is negative.

If the input is indeed negative, we need to add the correct amount of 1s and make sure we don’t
change the number itself. We can do this by left-shifting R3 by the number of bits in the input. We
do this in the second blank:

ADD R3,R3,R3

Now all we have left to do is the check. We need to see if our original input was negative or
positive. To do this we use R2. Remember, R2 originally contained x01 and was left-shifted by the
number of bits in our input. This means we have a 1 in R2 in the same place as the highest bit of
our input and a 0 everywhere else — a bit mask. If we AND R2 with R0, we isolate the highest bit
of our input, telling us whether it’s positive (isolated bit is 0) or negative (isolated bit is 1). We do
this in the final blank:

|AND R2,R2, RO |
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We’re now done with the problem!
Here’s another fill-in-the-blank problem:
Problem 4. (10 points): One algorithm for dividing a positive {non-zero) even number by 2 is to load the even numt

into one register, load a second register with 0, and then continually decrement the first and increment the second, un
you have the same value in both registers. That value is your original even number divided by 2.

Example: Take the value 10: (10,0) — (9,1) — (8,2) — (7.3) — (6,4) — (5.5). Hooray!
The subroutine shown below, with the two missing instructions, performs this algorithm.
Your job: Insert the two missing instructions.

LDI RO, INPUT

AND R1, R1, #0
AGAIN ADD RO, RO, #-1

ADD Rl, R1, #1
KOT RZ, RO

ADD R2, RZ, Rl

STI R0, OUTPUT
RET
INPUT .FILL %3100
OUTPUT .FILL %3101

The first thing we should do is understand the purpose of the program. We want to divide a
number by 2 by finding the halfway point between the number and 0.

As setup steps, the program first loads RO with the input and then clears R1. We then enter
a loop. We can guess that this label corresponds to a loop because there are limited reasons for a
label. Labels are used to mark the beginning of a loop (so that we can branch back to it), to access
a memory location that stores some required value, and to mark functions. It does not make sense
to have a variable stored in the middle of our code, and the code isn’t separated from the main
code, like a function normally is. Thus, the label marks the beginning of a loop. Since there are



56 CHAPTER 3. PROGRAMMING PRIMER

no branch instructions given in the program, we may assume that one of the two blanks will be a
branch back to AGAIN.

Our loop starts by decrementing the input (in R0) and incrementing R1. It then NOTs R0 into
R2. We want to exit the loop when R0 and R1 are equal; a comparison can be done by subtracting
one from the other and then branching based on that result. Since the LC-3 doesn’t have a subtract
instruction, the instructions that follow are a common way to implement a subtract. Start associ-
ating these steps with a subtraction/comparison. The NOT step starts us off with this action. If
we want to subtract a number we actually have to add its negative. We can negate a number by
NOTing it and adding 1. This is exactly what we do in the first blank:

ADD R2,R2,#1

The program shows that we then ADD R2 and R1. Since R2 now contains the negative of R0,
we're really doing RO — R1. Remember, every time we go through the loop we increment R1 and
decrement RO, and we want to exit the loop when the two are equal: i.e., when R0 - R1 = 0. This
means we want to stay in the loop if the result isn’t 0, i.e. if it’s negative or positive; thus we know
the second blank as well:

BRnp AGAIN

And with that, we finish the problem! However, we have only brushed the surface of missing
instruction problems. This type of problem can get very complex quickly. Now go and solve some
of these problems from past exams. We can guarantee that you will have atleast 1 of these problems
on a EE306 test, or your money back (disclaimer: You will not receive your money back).

3.6 What Does This Program Do? Type Problems

Another common exam question is of the type What does this program do?As a computer/soft-
ware engineer, a large part of your job will be to decipher code, either your own (which is why
comments are always great) or that of other people, so that you can work with that code. These
types of problems test that skills. Our goal here is to show you the thought process that goes in
behind solving one of these problems. Let’s dive right in with an example.

Problem 1

.ORIG X4000
LDI RO,DATA
ADD RO,R0,RO
STI RO,RESULT
HALT

DATA .FILL X4001
RESULT .FILL X4003
.END

This program looks pretty straightforward and simple but be careful not to jump to conclusions
as many times when asked one of these types of problems the correct answer is not the straight-
forward one!
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For instance lazy student Dan might have looked at this and said this is easy it multiplies a
value data by two. Well lazy Dan if you weren’t so lazy maybe you'd realize that you are completely
WRONG

So lets learn a lesson from our lazy friend Dan and begin by looking at the first instruction 1di
RO,data simple enough right?

WRONG!

What is in data?

Oh its x4001... wait a second so I am indirectly loading a memory location that I am writing
too thats odd!

Yes student it is odd so what are you going to do about it?

Well I am going to see what I am really loading into RO... Oh I am loading x1000 the opcode
for the following instruction (ADD R0,R0,R0) into RO. Isn't that tricky!

Okay so big whoop you figured that out so now you've got x1000 in RO and after adding it to it-
self you have x2000 in RO, but what happens when you execute your next instruction STI RO,result?
Let’s let Dan answer this one....

Well that was easy I might have messed up at first but anyone can see that now you just store
RO into your result and then you're finished.

WRONG

Wow lazy Dan have you heard of learning from your mistakes... Apparently not... So lets take
a look and see where Danny boy went wrong. What exactly is in result?

Well its x4003... the address of our halt instruction and since its an sti we are actually rewriting
this instruction... oh no so I guess we never stop so I guess this program crashes your computer.

GREAT JOB STUDENT! You figured it out and saved your computer from crashing!!!! Maybe
now that you are a computer whiz you can help your lazy friend Dan fix his crashed computer!

Problem 2

.ORIG X4000
AND R2,R2,#0
ADD R2,R2,#10
AND R3,R3,#0
LEA RO,DATA
LOOP LDR R1,R0,#0
AND R1,R1,#01
BRZ SKIP
ADD R3,R3,#1
SKIP ADD RO,RO,#1
ADD R2,R2,#-1
BRP LOOP
HALT

DATA BLKW #10 ;ASSUME THAT THE 10 VALUES HAVE ALREADY BEEN INITIALIZED
TO CONTAIN NUMBERS
.END

So what does this program do? Well lets first see what they give us in that one comment. So
we can assume that there are 10 elements in memory that we don’t know. Okay that helps us out
a little but we still don’t know what this program does with the elements. Let us look at our first
two instructions we clear R2, okay simple enough, then we add 10 to it... Wait a second we have an
array of 10 elements and we are loading R2 with 10 I am going go out on a limb and say that R2 is a
counter for which element you are accessing, but let’s continue. Then we clear R3, fair enough it’s
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probably a counter too, and then we load the address of data into R0... Woah there we are loading
RO with the address of data so right now I am pretty sure this program is definitely accessing and
doing something with the data in our array. Let’s find out what!

So we load R1 with our first element fair enough and then we AND it with #01 and check to see
if that bit is set and if it is we increment R3 and if it isn’t then we don’t and then we increment R0
(the address of the next element in our array) and decrement R2 or what is most likely our element
counter and check if its 0 (no more elements!).

So that was weird why did we and our number with #01. Well if you remember if a number is
odd it will always have that bit set and if it is even then it will always have that bit clear so we our
checking to see if our array element is odd or even easy enough. And since we are incrementing a
counter we are not only checking but we are counting how many odds are in this array!

Now you know how to count the odds (and evens) in an array, a very impractical and not very
useful skill but nonetheless it’s probably something you should know.

Again, and we love to mention this repeatedly, you won't learn anything by just reading. Go
out and practice.

3.7 Debugging

The last part of our programming guide is a quick introduction to debugging. Debugging, just like
writing programs, is a skill only refined with practice, but we can get you started.

We are not going to go too in depth in testing programs. The key to remember in testing is to
ALWAYS TEST THE CORNER CASES, after you test the normal cases. For example, in the state
machine example above, you should test inputs outside the state machine diagram (because of the
elegance of the solution, there are not that many corner cases besides those inputs). In the first
program, in which we added two numbers and then multiplied by 3, the corner cases would be
negative numbers or numbers close to the maximum value of an integer on the LC3. Handling
these corner cases and making your program robust are what separate complete and industrial
quality programs from incomplete ones.

However, let’s get back to debugging errors that occur. Luckily, there are many tools in most
environments in which you will write programs. Most environments, (and the LC3 simulator is no
exception), allow you to step through the program and examine memory locations. You should use
these tools to figure out where the problem is. The key is to write modular programs, and debug
each module separately. All industrial code projects are too big to write in one giant sitting, and
then ran. Projects split up by functions or modules, and are often written by different programs.
These modules should continuously be debugged. Once you are certain that there are no errors in
one module, you can focus on the next. In general, debugging should take you at least as long as
it took to write the code, and is never actually a done process in any significant project.

The hardest, and first, part of debugging is finding the problem and narrowing down where
in the program it occurs. From there, fixing the problem should be (mostly) trivial. After you run
the program, let’s say that there is some sort of error. For our purposes, it doesn’t matter whether
the error is logical or actually leads to the program crashing. Start stepping through the program.
However, before you do, write down what you expect each relevant memory location to contain
after each instruction. This step has two purposes. First, you will quickly see if you have any logical
bugs in your program - if you missed a step while decomposing the problem. Second, you will be
able to see if the instruction or set of instructions does what you want it to do. If the module that
you are currently testing does exactly what you want it to do, then you no longer have to worry
about it. If you run the program again, simply set a breakpoint past that set of instructions and
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debug the next module.

3.8 Conclusion

That concludes the programming part of the packet. Now take a break from reading and go write
some programs. The only way to get better at programming is to PRACTICE.
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